Ikea Standing Desk Goes Dumb To Smart On LIN Bus

IKEA’s products are known for their clean, Scandinavian design and low cost, but it is their DIY or “assemble it yourself” feature that probably makes them so popular with hackers. We seem to receive tips about IKEA hacks with a consistent regularity. [Robin Reiter] has a Bekant Sit/Stand motorized table with buttons to raise and lower the surface, but it doesn’t have any memory presets. That’s a shame because it requires a lot of fiddling with the up/down buttons to get it right every time. It would be nice to press a button, go grab a Coffee, and come back to find it adjusted at the desired height. With a little bit of hacking, he was able to not only add memory preset buttons, but also a USB interface for future computer control.

The existing hardware consists of a PIC16LF1938 micro-controller with two buttons for movement control and a LIN bus  protocol which communicates with the automotive grade motors with integrated encoders that report position values. After a bit of sniffing around with his oscilloscope and analyzer, he was able to figure out the control codes for the motor movements. For some strange reason, however, the LIN signals were inverted, so he had to introduce a transistor signal inverter between the PIC master and the Arduino Nano that would act as a slave LIN node. Software was made much easier thanks to an Arduino library developed by [Zapta] for the LIN Bus signal Injector, The controls now have four buttons — two to replicate the original up/down movements, and the other two to act as memory presets.

The code, schematic and a simple wiring layout are posted on Github, in case there are others out there who’d like to replicate this hack. Check out the video after the break where he gives a walk through the code.

Continue reading “Ikea Standing Desk Goes Dumb To Smart On LIN Bus”

A Blissful Microwave

[Tim] had a problem with his microwave. The buzzer was exceptionally annoying, and once his hot pockets or pizza rolls were done, the buzzer wouldn’t shut off. A two-kilohertz tone infected his soul. It was the only sound echoing in a Boschian nightmare of reheated frozen food.

Unlike an existential ennui, an annoying buzzer in a microwave is something anyone can fix. [Tim] just took a pair of pliers to the buzzer and ripped it off the PCB. This left him with another problem — how to tell when his food was done. This was solved by putting the Windows XP startup sound in his microwave.

With the buzzer out of the way, [Tim] took an Arduino nano and loaded it up with the Windows XP startup sound. There isn’t much Flash on the Arduino, but it could hold an 18kB sample, enough to play the startup sound at 8kHz. The sound itself is PCM audio and easily stuffed into a sketch.

The Arduino listens for the 2kHz tone generated by the microwave and sends the XP startup sound through a tiny class D amplifier. After mounting a speaker inside the microwave, [Tim] has a very vaporwavemicrowave.

Continue reading “A Blissful Microwave”

Reverse Engineering Ikea’s New Smart Bulbs

Over in Sweden, Czech, Italy, and Belgium, Ikea is launching a new line of ‘smart’ light bulbs. These countries are apparently the test market for these bulbs, and they’ll soon be landing on American shores. This means smart Ikea bulbs will be everywhere soon, and an Internet of Light Bulbs is a neat thing to explore. [Markus] got his hands on a few of these bulbs, and is now digging into their inner workings (German Make Magazine, with a Google Translate that includes the phrase, ‘capering the pear’).

There are currently four versions of these Ikea bulbs, ranging from a 400 lumen bulb designed for track lights to a 980 lumen bulb that will probably work in an American Edison lamp socket. These lights are controlled via a remote, with each individual bulb paired to the remote by turning the lamp on, holding the remote close to the bulb, and pressing a button.

Inside these bulbs is a Silicon Labs microcontroller with ZigBee support, twelve chip LEDs, and associated electronics that look like they might pass the bigclivedotcom smoke test. After tearing apart this bulb and planting the wireless module firmly in a breadboard, [Markus] found he could dim a pair of LEDs simply by clicking on the remote. Somewhere in these bulbs, there’s a possibility of doing something.

As with all Internet of Things, we must ask an important question: will it become part of Skynet and shut down the Internet, like webcams did last summer? These Ikea bulbs look pretty safe in that regard, as the bulb is inexorably tied to the remote and must be paired by holding it close to the bulb. We’re sure there are a few more interesting exploits for these bulbs, so once they’re released in the US we’ll take a look at them.

Plywood Steals The Show From Upcycled Broken Glass Art Lamps

You can tell from looking around his workshop that [Paul Jackman] likes plywood even more than we do. And for the bases of these lamps, he sandwiches enough of the stuff together that it becomes a distinct part of the piece’s visuals. Some work with a router and some finishing, and they look great! You can watch the work, and the results, in his video embedded below.

The plywood bases also hide the electronics: a transformer and some LEDs. To make space for them in the otherwise solid blocks of wood, he tosses them in the CNC router and hollows them out. A little epoxy for the caps of the jars and the bases were finished. Fill the jars with colored glass, and a transparent tube to allow light all the way to the top, and they’re done.

Continue reading “Plywood Steals The Show From Upcycled Broken Glass Art Lamps”

Well, That Was Quick: Heng Lamp Duplicated

That didn’t take long at all! We covered a pretty cool lamp with a novel magnetic switch mechanism, and [msraynsford] has his version laser cut, veneered, a video posted on YouTube (embedded below), and an Instructable written up before we’d even caught our breath.

For those who missed it, the original Heng lamp is a beautiful design with a unique take on a magnetic switch. As with the original, the secret sauce is a switch inside that’s physically held closed by the two magnets. It’s a pretty clever mechanism that looks magical to boot.

[msraynsford]’s version replaces the floating spheres with floating cylinders, which are easier to fabricate in layers on a laser cutter, but otherwise the copy is fairly true to the aesthetics of the original. Pretty sweet!
Continue reading “Well, That Was Quick: Heng Lamp Duplicated”

LiftLocker Keeps Your Lift Safe From Attacking Garage Doors

Car lifts used to be a tool reserved for professional mechanics. Times are a-changing though. With the advent of reasonably priced four-post hydraulic lifts, more and more shade tree mechanics are joining the five-foot high club. Installing a lift in a home garage creates a few hazards, though. What happens when a family remotely opens the garage door while there is a car up on the lift? Garage door and lifted vehicle will meet – with expensive and/or dangerous results. [Joe Auman] saw this problem coming a mile away. He built the LiftLocker to make sure it never happens to him.

At its core, LiftLocker is a set of switched extension cords. Two cast-aluminum boxes hide the electronics. One box plugs in-line with the lift. The other box plugs in-line with the garage door opener. Each box includes a Sparkfun Redboard Arduino compatible, an RFM22 433 MHz Radio, and a relay. Input comes from a security system magnetic reed-switch. Both boxes are identical in hardware and code.

Operation is simple. One box and reed switch goes on the lift, the other on the garage door. If the lift is going up, its reed switch will open. The lift’s Arduino detects this and commands its RFM22 to send a signal to the other box on the garage door. Upon receiving this signal, the garage door controller will open its relay, disconnecting power to the garage door opener. Communication is two-way, so if the Lift controller doesn’t hear an ACK message from the garage door controller, everything will shut down. Click past the break to see the system in action.

Continue reading “LiftLocker Keeps Your Lift Safe From Attacking Garage Doors”

Open Your Garage Door With Your Smartphone

The eternal enemy of [James Puderer]’s pockets is anything that isn’t his smartphone. When the apartment building he resides in added a garage door, the forces of evil gained another ally in the form of a garage door opener. So, he dealt with the insult by rigging up a Raspberry Pi to act as a relay between the opener and his phone.

The crux of the setup is Firebase Cloud Messaging (FCM) — a Google service that allows messages to be sent to devices that generally have dynamic IP addresses, as well as the capacity to send messages upstream, in this case from [Puderer]’s cell phone to his Raspberry Pi. After whipping up an app — functionally a button widget — that sends the command to open the door over FCM, he set up the Pi in a storage locker near the garage door and was able to fish a cable with both ethernet and power to it. A script running on the Pi triggers the garage door opener when it receives the FCM message and — presto — open sesame.

Continue reading “Open Your Garage Door With Your Smartphone”