DIY Fiber Laser Adds Metal Cutting To The Mix

Sadly, the usual CO2-powered suspects in the DIY laser cutter market are woefully incapable of cutting metal. Sure, they’ll cut the heck out of plywood and acrylic, and most will do a decent job at engraving metal. But cutting through a sheet of steel or aluminum requires a step up to much more powerful fiber laser cutters. True, the costs of such machines can be daunting, but not daunting enough for [Travis Mitchell], who has undertaken a DIY fiber laser cutter build that really caught our eye.

Right off the bat, a couple of things are worth noting here. First — and this should be obvious from the fountains of white-hot sparks in the video below — laser cutters are dangerous, and you should really know what you’re doing before tackling such a build. Second, just because [Travis] was able to cut costs considerably compared to a commercial fiber laser cutter doesn’t mean this build was cheap in absolute terms — he reports dropping about $15,000 so far, with considerable ongoing costs to operate the thing.

That said, there doesn’t appear to be anything about this build that anyone with some experience building CNC machines wouldn’t be able to tackle. The CNC side of this is pretty straightforward, although we note that the gantry, servos, and controller seem especially robust.

The laser itself is an off-the-shelf machine, a Raycus RFL-C1000 fiber laser and head that packs a 1,000-Watt punch. There’s also the required cooling system for the laser, and of course there’s an exhaust system to get rid of the nasty fumes.

All that stuff requires a considerable investment, but we were surprised to learn how much the consumables cost. [Travis] opted for bottled gas for the cutter’s gas assist system — low-pressure oxygen for carbon steel and high-pressure nitrogen for everything else. Refills are really pricey, in part because of the purity required, but since the proper compressor for the job is out of the budget for now, the tanks will have to do. And really, the thing cuts like a dream. Check out the cutting speed and precision in the video below.

This is but the first in a series of videos that will detail the build, and if [Travis] thought this would whet our appetites for more, he was right. We really haven’t seen many DIY fiber laser builds, but we have seen a teardown of a 200-kW fiber laser that might tickle your fancy.

Continue reading “DIY Fiber Laser Adds Metal Cutting To The Mix”

A White-Light Laser, On The Cheap

Lasers are known for the monochromatic nature of their light, so much so that you might never have thought there could be such a thing as a white laser. But in the weird world of physics, a lot of things that seem impossible aren’t really, as demonstrated by this dirt-cheap supercontinuum laser.

Of course, we’re not experts on lasers, and certainly not on non-linear optics, so we’ll rely on [Les Wright]’s video below to explain what’s going on here. Basically, a “supercontinuum” is just the conversion of a monochromatic source to a broader spectral bandwidth. It’s a non-linear optical process that’s usually accomplished with expensive bits of kit, like photonic crystal fibers, which are optical fibers with an array of tiny air-filled holes running down their lengths. Blast a high-intensity monochromatic laser down one end, and white light comes out the other end.

Such fibers are obviously fantastically expensive, so [Les] looked back in the literature and found that a simple silica glass single-mode fiber could be used to produce a supercontinuum. As luck would have it, he had been experimenting with telecom fibers recently, so along with a nitrogen laser he recovered from a Dumpster, he had pretty much everything he needed. The final setup uses the UV laser to pump a stilbene dye laser, which shoots a powerful pulse of 426 nanometer light into about 200 meters of fiber, and produces a gorgeous supercontinuum containing light from 430 nm to 670 nm — pretty much the entire visible spectrum.

It’s great to see projects like this that leverage low-cost, easy-to-source equipment to explore esoteric physics concepts.

Continue reading “A White-Light Laser, On The Cheap”

A persons handing holding a pile of generative, laser cut snowflake ornaments

Laser-Cutting A Flurry Of Generative Snowflakes

It’s the holiday season, and what better way to celebrate than to carve out some generative snowflakes on your laser cutter? [Bleeptrack] has developed a web-based tool that creates generative snowflake ornaments which can be exported to SVG files ready-made for laser or vinyl cutting.

True to their namesake, each generated snowflake ornament is (very likely to be) unique, with multiple layers created that can be stacked on top of each other. [Bleeptrack] has showcased a few realizations, using semitransparent paper sandwiched between two top layer cutouts, made out of wood or cardboard.

The snowflakes are a great balance of minimal design while still being beautiful and rich in detail. They can be easily produced on any laser cutter or vinyl cutter that you might have handy. Source code is available on GitHub for those wanting to dive into the details of the web tool. Cutting one of your own would make a perfect addition to a Neodriver ornament or a tiny DOOM playing ornament. Video after the break!

Continue reading “Laser-Cutting A Flurry Of Generative Snowflakes”

An RGB laser projector opened up on a workbench

Laser Projector Needs Hardware Hack After Software Mod

You probably recognize that dreadful feeling when you reboot a gadget after updating its firmware, only to be greeted by a blank screen and an unresponsive device. This apparently happened to the previous owner of a bricked RGB laser projector that [Buy It Fix It] got his hands on: it briefly flashed its laser on power-up but otherwise remained completely dead.

A thorough inspection of the major components didn’t reveal any physical damage, so the issue had to be in software. [Buy It Fix It] managed to connect his Segger J-link programmer to the STM32 main processor and downloaded the contents of its firmware, only to find the remains of a PDF file which seemed to have been accidentally flashed into the chip’s program space. Fixing the device should then just be a matter of restoring the proper firmware, but [Buy It Fix It] wasn’t able to find a copy of it anywhere.

A PCB with a few mod wires on itWhat he did find was Maximus64’s GitHub repository that contained a software mod for a different projector model, as well as its original firmware. Flashing that version didn’t fix [Buy It Fix It]’s projector either, although it did now start to actuate its galvos.

A bit of reverse engineering revealed that the two projectors were very similar from a hardware point of view, but had their laser drivers hooked up to different I/O pins: simply cutting the board traces and soldering some wires to re-route the signals was enough to bring the projector back into a working state.

Having to modify hardware in order to make it fit a piece of software is unfortunate, but sometimes you just have to make do with what you’ve got. If you’ve got no firmware to begin with, then you might even have to write your own from scratch.

Continue reading “Laser Projector Needs Hardware Hack After Software Mod”

Properly Pipe Laser Light Around With Homebrew Fiber Couplings

It’s a rare person who can pick up a cheap laser pointer and not wield it like a lightsaber or a phaser, complete with sound effects. There’s just something about the “pew-pew” factor that makes projecting a laser beam fun, even if it’s not the safest thing to do, or the most efficient way to the light from one place to another.

We suspect that [Les Wright] has pew-pewed his way through more than a few laser projects in his lab, including his latest experiments with fiber coupling of lasers. The video below is chock full of tips on connecting cheap communications-grade fiber assemblies, which despite their standardized terminations aren’t always easy to use with his collection of lasers. Part of the challenge is that the optical fiber inside the cladding is often very small — as few as 9 microns. That’s a small target to hit without some alignment help, which [Les] uses a range of hacks to accomplish.

The meat of the video demonstrates how to use a cheap fiber fault locator and a simple optical bench setup to precisely align any laser with an optical fiber. A pair of adjustable mirrors allow him to overlap the beams of the fault locator and the target laser precisely. The effects can be interesting; we had no idea comms-grade fiber could leak as much light through the cladding as this, and the bend-radius limits are pretty dramatically illustrated. [Les] teases some practical sensing applications for this in a follow-up video, which we’re looking forward to.

Looking for more laser fun with your remaining eye? Check out [Marco Reps] teardown of a 200-kW fiber laser.

Continue reading “Properly Pipe Laser Light Around With Homebrew Fiber Couplings”

The World’s Brightest Laser Pointer?

The videos from [styropyro] are always amusing and informative. However, ironically for him, he is alarmed that many green laser pointers are more powerful than they are supposed to be. Sure, you often want a powerful laser, but if you think a laser is safe and it isn’t, you could… well… put an eye out. See the video below to see what [styropyro] claims is the brightest laser pointer in the world.

The key is a possibly gray market very large green laser array. It appears to have at least 24 lasers and some pretty serious lenses. He tested the array first with a power supply and it looked like something out of a bad science fiction movie, even at reduced power.

Continue reading “The World’s Brightest Laser Pointer?”

Portable ESP32 RGB Lasershow Has All The Trimmings

Perhaps there was a time when fancy laser effects were beyond those without the largest of bank accounts, but today they can be created surprisingly easily. [Corebb] shows us how with a neat unit using an off the shelf RGB laser module and mirror module, driven by a ESP32 with software designed to make it as easy as possible to use.

The video below the break is in Chinese so you’ll have to turn on the subtitles if you’re an Anglophone, and it takes us through the whole process. It’s mounted in an SLA 3D printed enclosure which neatly holds all the parts. The ESP32 module drives a couple of DACs which in turn drive the galvanometer motors through a pair of amplifiers.

Then the software allows all sorts of custom displays for your creative expression, including uploading quick sketches over WiFi. Beyond pretty patterns we see it mounted on a bicycle for a head-up display of speed and navigation info. Even if it does fall off and break at one point we can see that could be an extremely useful accessory.

All the code can be found in a GitHub repository should you wish to try for yourself. Meanwhile we’ve covered a lot of laser projector projects here in the past, including most recently this one using stepper motors in place of galvanometers.

Continue reading “Portable ESP32 RGB Lasershow Has All The Trimmings”