Listen To A Song Made From Custom Nintendo LABO Waveform Cards

[Hunter Irving] has been busy with the Nintendo LABO’s piano for the Nintendo Switch. In particular he’s been very busy creating his own custom waveform cards, which greatly expands the capabilities of the hackable cardboard contraption. If this sounds familiar, it’s because we covered his original method of creating 3D printed waveform cards that are compatible with the piano, but he’s taken his work further since then. Not only has he created new and more complex cards by sampling instruments from Super Nintendo games, he’s even experimented with cards based on vowel sounds in an effort to see just how far things can go. By layering the right vowel sounds just so, he was able to make the (barely identifiable) phrases I-LIKE-YOU, YOU-LIKE-ME, and LET’S-A-GO.

Those three phrases make up the (vaguely recognizable) lyrics of a song he composed using his custom waveform cards for the Nintendo LABO’s piano, appropriately titled I Like You. The song is at the 6:26 mark in the video embedded below, but the whole video is worth a watch to catch up on [Hunter]’s work. The song is also hosted on soundcloud.

Continue reading “Listen To A Song Made From Custom Nintendo LABO Waveform Cards”

Synthesizing nightime soundscape

Synthesizing Mother Nature’s Sounds Like You’ve Never Seen Before

We’ve all heard the range of sounds to be made electronically from mostly discrete components, but what [Kelly Heaton] has achieved with her many experiments is a whole other world, the world of nature to be exact. Her seemingly chaotic circuits create a nighttime symphony of frogs, crickets, and katydids, and a pleasant stroll through her Hackaday.io logs makes how she does it crystal clear and is surely as delightful as taking a nocturnal stroll through her Virginia countryside.

Homemade piezo buzzer with amplifierThe visual and aural sensations of the video below will surely tempt you further, but in case it doesn’t, here’s a taste. When Radio Shack went out of business, she lost her source of very specific piezo buzzers and so had to reverse engineers theirs to build her own, right down to making her own amplifiers on circular circuit boards and vacuum forming and laser cutting the housings. For the sounds, she starts out with a simple astable multivibrator circuit, demonstrating how to create asymmetry by changing capacitors, and then combining two of the circuits to get something which sounds just like a cricket. She then shows how to add katydids which enhance the nighttime symphony with percussive sounds much like a snare drum or hi-hat. It’s all tied together with her Mother Nature Board built up from a white noise generator, Schmitt trigger, and shift registers to turn on and off the different sound circuits, providing a more unpredictable and realistic nighttime soundscape. The video below shows the combined result, though she admits she’ll never really be finished. And be sure to check out even more photos and videos of her amazing work in the gallery on her Hackaday.io page.

For the more familiar range of sounds, though no less varied, check out our own [Elliot William’s] series, Logic Noise, where he takes us through an extensive exploration of a less Mother Naturely soundscape.

Continue reading “Synthesizing Mother Nature’s Sounds Like You’ve Never Seen Before”

The 3D Printed Guitar

We just wrapped up the Musical Instrument Challenge in the Hackaday Prize, and that means we’re sorting through a ton of inventive electronic musical instruments. For whatever reason we can’t seem to find many non-electronic instruments. Yes, MPCs are cool, but so are strings and vibrating columns of air. That’s what makes this entry special: it’s a 3D printed physical guitar. But it’s also got a hexaphonic pickup, there are lights in the fretboard, and it talks to a computer for PureData processing.

First, the construction of this guitar. It’s mostly 3D printed, with the ‘frame’ of the body made in a Creality 3D printer. It’s a bolt-on neck with a telecaster body, but the core of this guitar — where the pickups and bridge attach — are made out of aluminum extrusion. Another piece of aluminum extrusion runs down the neck, which is clad in a 3D-printed ‘back’ that looks ‘comfortable enough’. The headstock is bolted onto the end of this neck, and it seems reasonably tolerant of having a hundred pounds or so of strings pulling on it. The bridge is also 3D printed, with the saddles integrated into the print. Conventional wisdom says this would sound terrible, but nylon saddles were a thing back in the day, so we’re just going to roll with it.

The electronics are where this project really shines. The pickup is a salvaged Roland GK3 hexaphonic deal, with six outputs for each string. This is sent into a Teensy with an audio path for each individual string. Audio processing happens in the guitar, and latency is under five milliseconds, which is quick enough to not be a terrible distraction.

Except for synths and drum machines and computers, the last fifty or so years of technological progress hasn’t really made it to the world of musical instruments. Guitarists, especially, are technophobes who hate everything invented after 1963. While the neck of [Frank]’s ElektroCaster probably doesn’t feel great, this is a really interesting instrument and a great entry to the Hackaday Prize.

The Magic Flute Of Rat Mind Control Aims To Mix Magic And Science

Well this is unusual. Behold the Magic Flute of Rat Mind Control, and as a project it is all about altering the response to the instrument, rather than being about hacking the musical instrument itself. It’s [Kurt White]’s entry to the Musical Instrument Challenge portion of The Hackaday Prize, and it’s as intriguing as it is different.

The Raspberry-Pi controlled, IoT Skinner box for rats, named Nicodemus.

[Kurt] has created a portable, internet-connected, automated food dispenser with a live streaming video feed and the ability to play recorded sounds. That device (named Nicodemus) is used as a Skinner Box to train rats — anywhere rats may be found — using operant conditioning to make them expect food when they hear a few bars of Black Sabbath’s Iron Man played on a small recorder (which is a type of flute.)

In short, the flute would allow one to summon hordes of rats as if by magic, because they have been trained by Nicodemus to associate Iron Man with food.

Many of the system’s elements are informed by the results of research into sound preference in rats, as well as their ability to discriminate between different melodies, so long as the right frequencies are present. The summoning part is all about science, but what about how to protect oneself from the hordes of hungry rodents who arrive with sharp teeth and high expectations of being fed? According to [Kurt], that’s where the magic comes in. He seems very certain that a ritual to convert a wooden recorder into a magic flute is all the protection one would need.

Embedded below is something I’m comfortable calling the strangest use case video we’ve ever seen. Well, we think it’s a dramatized use case. Perhaps it’s more correctly a mood piece or motivational assist. Outsider Art? You decide.

Continue reading “The Magic Flute Of Rat Mind Control Aims To Mix Magic And Science”

Sounding A Sour Note Can Save People From A Sour Stomach (Or Worse)

We’ve covered construction of novel music instruments on these pages, and we’ve covered many people tearing down scientific instruments. But today we’ve got something that managed to cross over from one world of “instrument” into another: a music instrument modified to measure a liquid’s density by listening to changes in its pitch.

This exploration started with a mbira, a mechanically simple music instrument. Its row of rigid metal tines was replaced with a single small diameter hollow metal tube. Filling the tube with different liquids would result in different sounds. Those sounds are captured by a cell phone and processed by an algorithm to calculate the difference in relative density of those liquids. Once the procedure was worked out, the concept was verified to work on a super simple instrument built out of everyday parts: a tube mounted on a piece of wood.

At this point we have something that would be a great science class demonstration, but the authors went a step further and described how this cheap sensor can be used to solve an actual problem: detecting counterfeit pharmaceuticals. Changing composition of a drug would also change its density, so a cheap way to compare densities between a questionable sample against a known good reference could be a valuable tool in parts of the world where chemistry labs are scarce.

For future development, this team invites the world to join them applying the same basic idea in other ways, making precise measurements for almost no cost. “Any physical, chemical, or biological phenomena that reproducibly alters the pitch-determining properties of a musical instrument could in principle be measured by the instrument.” We are the ideal demographic to devise new variations on this theme. Let us know what you come up with!

If you need to do quick tests before writing analysis software, audio frequency can be measured using the Google Science Journal app. We’ve seen several hacks turning a cell phone’s camera into instruments like a spectrometer or microscope, but hacks using a phone’s microphone is less common and ripe for exploration. And anyone who manages to make cool measurements while simultaneously making cool music will instantly become a serious contender in our Hackaday Prize music instrument challenge!

[via Science News]

Gorgeous Omnidirectional 3D Printed Speaker

With all due respect to the hackers and makers out there that provide us with all these awesome projects to salivate over, a good deal of them tend to prioritize functionality over aesthetics. Which isn’t a bad thing necessarily, and arguably better than the alternative. But for many people there’s a certain connotation around DIY, an impression that the final product is often a little rough around the edges. It’s usually cheaper, maybe even objectively better, but rarely more attractive.

Which makes builds like this absolutely beautiful 3D printed Bluetooth speaker by [Ahmsville] especially impressive. Not only did he engineer a fantastic sounding speaker that projects stereo sound no matter where you are in the room, he clearly gave a lot of thought into making the final product look as good as it sounds.

The 3D-printed enclosure provides separation for the four internal speakers and two passive radiators, as well as holding the electronics. A custom made 3S battery powers the Bluetooth module though an isolated step-down module, and the twin 18 W TDA2030 amplifiers feed their respective pair of drivers.

The device is surrounded by an impressively detailed 3D-printed mesh, which is then wrapped with some speaker grill fabric to give it a very professional look. In the video after the break, [Ahmsville] shows a time-lapse of building the speaker, as well as a demonstration of how it sounds on his desk.

If you’re more about function than what the finished product looks like, we’ve covered speaker enclosures made out of various types of actual trash which you can take a look at.

Continue reading “Gorgeous Omnidirectional 3D Printed Speaker”

Repairing A Desktop Jukebox

Although vinyl records have had a bit of resurgence, they are far away from their heyday. There was a time when 45 RPM singles were not just how you listened to music at home, but they also populated the jukeboxes you’d find in your local malt shop or anywhere else in public. [Fran] has an old 45 RPM “desktop jukebox” from RCA. It really isn’t a jukebox, but an automatic record changer dating from the 1950s. The problem is, the cartridge was toast. Replacing it wasn’t a big problem, even though replacing it with an exact duplicate wasn’t possible. But, of course, that was just the start.

You can see in the video below, that there were some weight problems with the cartridge, but the changer part would not work. She tears it down and makes some modifications. She even pulled out the schematic which had three tubes — one of which was just a rectifier.

Continue reading “Repairing A Desktop Jukebox”