30 Days Of Terror: The Logistics Of Launching The James Webb Space Telescope

Back during the 2019 Superconference in Pasadena, I had the chance to go to Northrop Grumman’s Redondo Beach campus to get a look at the James Webb Space Telescope. There is the high-bay class 10,000+ cleanroom in building M8, my wife and I along with fellow space nerd Tom Nardi got a chance to look upon what is likely the most expensive single object ever made. The $10 billion dollar space observatory was undergoing what we thought were its final tests before being packaged up and sent on its way to its forever home at the L2 Lagrange point.

Sadly, thanks to technical difficulties and the COVID-19 pandemic, it would be another two years before JWST was actually ready to ship — not a new story for the project, Mike Szczys toured the same facility back in 2015. But the good news is that it finally has shipped, taking the very, very slow first steps on its journey to space.

Both the terrestrial leg of the trip and the trip through 1.5 million kilometers of space are fraught with peril, of a different kind, of course, but still with plenty of chances for mission-impacting events. Here’s a look at what the priceless and long-awaited observatory will face along the way, and how its minders will endure the “30 days of terror” that lie ahead.

Continue reading “30 Days Of Terror: The Logistics Of Launching The James Webb Space Telescope”

Magnesium: Where It Comes From And Why We’re Running Out

Okay, we’re not running out. We actually have tons of the stuff. But there is a global supply chain crisis. Most of the world’s magnesium is processed in China and several months ago, they just… stopped. In an effort to hit energy consumption quotas, the government of the city of Yulin (where most of the country’s magnesium production takes place) ordered 70% of the smelters to shut down entirely, and the remainder to slash their output by 50%. So, while magnesium remains one of the most abundant elements on the planet, we’re readily running out of processed metal that we can use in manufacturing.

Nikon camera body
The magnesium-alloy body of a Nikon d850. Courtesy of Nikon

But, how do we actually use magnesium in manufacturing anyway? Well, some things are just made from it. It can be mixed with other elements to be made into strong, lightweight alloys that are readily machined and cast. These alloys make up all manner of stuff from race car wheels to camera bodies (and the chassis of the laptop I’m typing this article on). These more direct uses aside, there’s another, larger draw for magnesium that isn’t immediately apparent: aluminum production.

But wait, aluminum, like magnesium is an element. So why would we need magnesium to make it? Rest assured, there’s no alchemy involved- just alloying. Much like magnesium, aluminum is rarely used in its raw form — it’s mixed with other elements to give it desirable properties such as high strength, ductility, toughness, etc. And, as you may have already guessed, most of these alloys require magnesium. Now we’re beginning to paint a larger, scarier picture (and we just missed Halloween!) — a disruption to the world’s aluminum supply.

Continue reading “Magnesium: Where It Comes From And Why We’re Running Out”

A Fascinating Plot Twist As Researchers Recreate Classic “Primordial Soup” Experiment

Science is built on reproducibility; if someone else can replicate your results, chances are pretty good that you’re looking at the truth. And there’s no statute of limitations on reproducibility; even experiments from 70 years ago are fair game for a fresh look. A great example is this recent reboot of the 1952 Miller-Urey “primordial soup” experiment which ended up with some fascinating results.

At the heart of the Miller-Urey experiment was a classic chicken-and-the-egg paradox: complex organic molecules like amino acids and nucleic acids are the necessary building blocks of life, but how did they arise on Earth before there was life? To answer that, Stanley Miller, who in 1952 was a graduate student of Harold Urey,  devised an experiment to see if complex molecules could be formed from simpler substances under conditions assumed to have been present early in the planet’s life. Miller assembled a complicated glass apparatus, filled it with water vapor and gasses such as ammonia, hydrogen, and methane, and zapped it with an electric arc to simulate lightning. He found that a rich broth of amino acids accumulated in the reaction vessel; when analyzed, the sludge was found to contain five of the 20 amino acids.

The Miller-Urey experiment has been repeated over and over again with similar results, but a recent reboot took a different tack and looked at how the laboratory apparatus itself may have influenced the results. Joaquin Criado-Reyes and colleagues found that when run in a Teflon flask, the experiment produced far fewer organic compounds. Interestingly, adding chips of borosilicate glass to the Teflon reaction chamber restored the richness of the resulting broth, suggesting that the silicates in the glassware may have played a catalytic role in creating the organic soup. They also hypothesize that the highly alkaline reaction conditions could create microscopic pits in the walls of the glassware, which would serve as reaction centers to speed up the formation of organics.

This is a great example of a finding that seems to knock a hole in a theory but actually ends up supporting it. On the face of it, one could argue that Miller and Urey were wrong since they only produced organics thanks to contamination from their glassware. And it appears to be true that silicates are necessary for the abiotic generation of organic molecules. But if there was one thing that the early Earth was rich in, it was silicates, in the form of clay, silt, sand, rocks, and dust. So this experiment lends support to the abiotic origin of organic molecules on Earth, and perhaps on other rocky worlds as well.

[Featured image credit: Roger Ressmeyer/CORBIS, via Science History Institute]

This Week In Security:Use-After-Free For Dummies, WiFi Cracking, And PHP-FPM

In a brilliant write-up, [Stephen Tong] brings us his “Use-After-Free for Dummies“. It’s a surprising tale of a vulnerability that really shouldn’t exist, and a walkthrough of how to complete a capture the flag challenge. The vulnerable binary is running on a Raspberry Pi, which turns out to be very important. It’s a multithreaded application that uses lock-free data sharing, through pair of integers readable by multiple threads. Those ints are declared using the volatile keyword, which is a useful way to tell a compiler not to optimize too heavily, as this value may get changed by another thread.

On an x86 machine, this approach works flawlessly, as all the out-of-order execution features are guaranteed to be globally transparent. Put another way, even if thread one can speed up execution by modifying shared memory ahead of time, the CPU will keep the shared memory changes in the proper order. When that shared memory is controlling concurrent access, it’s really important that ordering happens the way you expect it. What was a surprise to me is that the ARM platform does not provide that global memory ordering. While the out-of-order execution will be transparent to the thread making changes, other threads and processes may observe those actions out of order. An example may help:

volatile int value;
volatile int ready;

// Thread 1
value = 123; // (1)
ready = 1; // (2)

// Thread 2
while (!ready); // (3)
print(value); // (4)

Continue reading “This Week In Security:Use-After-Free For Dummies, WiFi Cracking, And PHP-FPM”

Speaker ‘Stun Gun’ Aims To Combat China’s Dancing Grannies

One of the more popular social activities in China is group dancing in public squares. Often the pastime of many middle-aged and older women, participants are colloquially referred to as “dancing grannies.” While the activity is relatively wholesome, some dancers have begun to draw the ire of their neighbourhoods with their loud music and attempts to dominate the use of public parks and recreational areas.

Naturally, a technological solution sprung up promising to solve the problem. The South China Morning Post has reported on a “stun gun” device which claims to neutralise speakers from a distance, in an effort to shut down dance gatherings. The device created a huge stir on social media, as well as many questions about how it could work. It’s simpler, and a bit less cool, than you think. Continue reading “Speaker ‘Stun Gun’ Aims To Combat China’s Dancing Grannies”

New Raspberry Pi Zero 2 Upgrades To Quad-Core Processor

Over the years, we’ve seen a steady stream of updates for the Raspberry Pi Foundation’s flagship single-board computer (SBC), with each new release representing a significant boost in processing power and capability. But the slim Raspberry Pi Zero, released all the way back in 2015, hasn’t been quite so fortunate. Beyond the “W” revision that added WiFi and Bluetooth in 2017, the specs of the diminutive board have remained unchanged since its release.

That is, until now. With the introduction of the $15 USD Raspberry Pi Zero 2 W, the ultra-compact Linux board gets a much-needed performance bump thanks to the new RP3A0 system-in-package, which combines a Broadcom BCM2710A1 die with 512 MB of LPDDR2 SDRAM and a quad-core 64-bit ARM Cortex-A53 CPU clocked at 1 GHz. In practical terms, the Raspberry Pi Foundation says the new Zero 2 is five times as fast as its predecessor with multi-threaded workloads, and offers a healthy 40% improvement in single-threaded performance. That puts it about on par with the Raspberry Pi 3, though with only half the RAM.

Otherwise, the new Zero 2 isn’t much different from the original. It’s the same size and shape, meaning existing cases or mounts should work fine. You’ll also find the micro SD slot, CSI camera connector, dual micro USB ports, and mini HDMI port in the same places they were in 2015.

Frankly we’re a little surprised they didn’t switch over to USB-C (at least for the power port) and micro HDMI to bring it in line with the Pi 4, but of course, they presumably didn’t want to break compatibility with existing Zero projects. At least we won’t have to wait for a second edition to add wireless, as the Zero 2 W offers 2.4 GHz 802.11 b/g/n WiFi and Bluetooth 4.2 out of the box.

We’ll have samples of the new Zero 2 W in hand shortly, so keep an eye out for a detailed overview of this highly anticipated new member of the Pi family. In the meantime, let us know what you think about the new hardware in the comments. Is it a worthy successor to the original $5 Pi Zero?

Omni-Wheeled Cane Steers The Visually-Impaired Away From Obstacles

Sure, there are smart canes out there, commercial and otherwise. We’ve seen more than a few over the years. But a group of students at Stanford University have managed to bring something novel to the augmented cane.

The details of an augmented cane for the visually impaired that features an omni wheel to steer them away from obstacles.Theirs features a motorized omni wheel that sweeps smoothly from left to right during normal cane operation, and when the cane senses an object that turns out to be an obstacle, the omni wheel goes into active mode, pulling the user out of the path of danger.

Tied for best part of this build is the fact that they made the project with open hardware and published all the gory details in a repo, so anyone can replicate it for about $400.

The cane uses a Raspi 4 with camera to detect objects, and a 2-D LIDAR to measure the distance to those objects. There’s a GPS and a 9-DOF IMU to find the position and orientation of the user. Their paper is open, too, and it comes with a BOM and build instructions. Be sure to check it out in action after the break.

There’s more than one way to guide people around with haptic feedback. Here’s the smartest pair of shoes we’ve seen lately.

Continue reading “Omni-Wheeled Cane Steers The Visually-Impaired Away From Obstacles”