Hacked Heating Instruments For The DIY Biology Lab

[Justin] from The Thought Emporium takes on a common molecular biology problem with these homebrew heating instruments for the DIY biology lab.

The action at the molecular biology bench boils down to a few simple tasks: suck stuff, spit stuff, cool stuff, and heat stuff. Pipettes take care of the sucking and spitting, while ice buckets and refrigerators do the cooling. The heating, however, can be problematic; vessels of various sizes need to be accommodated at different, carefully controlled temperatures. It’s not uncommon to see dozens of different incubators, heat blocks, heat plates, and even walk-in environmental chambers in the typical lab, all acquired and maintained at great cost. It’s enough to discourage any would-be biohacker from starting a lab.

[Justin] knew It doesn’t need to be that way, though. So he tackled two common devices:  the incubator and the heating block. The build used as many off-the-shelf components as possible, keeping costs down. The incubator is dead simple: an insulated plastic picnic cooler with a thermostatically controlled reptile heating pad. That proves to be more than serviceable up to 40°, at the high end of what most yeast and bacterial cultures require.

The heat block, used to heat small plastic reaction vessels called Eppendorf tubes, was a little more complicated to construct. Scrap heat sinks yielded aluminum stock, which despite going through a bit of a machinist’s nightmare on the drill press came out surprisingly nice. Heat for the block is provided by a commercial Peltier module and controller; it looks good up to 42°, a common temperature for heat-shocking yeast and tricking them into taking up foreign DNA.

We’re impressed with how cheaply [Justin] was able to throw together these instruments, and we’re looking forward to seeing how he utilizes them. He’s already biohacked himself, so seeing what happens to yeast and bacteria in his DIY lab should be interesting.

Continue reading “Hacked Heating Instruments For The DIY Biology Lab”

Infection? Your Smartphone Will See You Now

When Mr. Spock beams down to a planet, he’s carrying a tricorder, a communicator, and a phaser. We just have our cell phones. The University of California Santa Barbara published a paper showing how an inexpensive kit can allow your cell phone to identify pathogens in about an hour. That’s quite a feat compared to the 18-28 hours required by traditional methods. The kit can be produced for under $100, according to the University.

Identifying bacteria type is crucial to prescribing the right antibiotic, although your family doctor probably just guesses because of the amount of time it takes to get an identification through a culture. The system works by taking some — ahem — body fluid and breaking it down using some simple chemicals. Another batch of chemicals known as a LAMP reaction mixture multiplies DNA and will cause fluorescence in the case of a positive result.

Continue reading “Infection? Your Smartphone Will See You Now”

Publish Or Perish: The Sad Genius Of Ignaz Semmelweis

Of all the lessons that life hands us, one of the toughest is that you can be right about something but still come up holding the smelly end of the stick. Typically this is learned early in life, but far too many of us avoid this harsh truth well into adulthood. And in those cases where being right is literally a matter of life or death, it’s even more difficult to learn that lesson.

For Ignaz Semmelweis, a Hungarian physician-scientist in the mid-19th century, failure to learn that being right is attended by certain responsibilities had a very high cost. Ironically it would also save the lives of countless women with a revolutionary discovery that seems so simple today as to be self-obvious: that a doctor should wash his hands before seeing patients.

Continue reading “Publish Or Perish: The Sad Genius Of Ignaz Semmelweis”

Living 3D Printer Filament

This is more than a printing filament hack — closer to bleeding edge bio-engineering — but we can’t help but be fascinated by the prospect of 3D printing with filament that’s alive on a cellular level.

The team from MIT led by [Xuanhe Zhao] and [Timothy Lu] have programmed bacteria cells to respond to specific compounds.  To demonstrate, they printed a temporary tattoo of a tree formed of the sturdy bacteria and a hydrogel ‘ink’ loaded with nutrients, that lights up over a few hours when adhered to skin swabbed with these specific stimuli.

So far, the team has been able to produce objects as large as several centimetres, capable of being adapted into active materials when printed and integrated as wearables, displays, sensors and more.

Continue reading “Living 3D Printer Filament”

OSM (Pronounced Awesome) Hardware Makes DNA In Space

OSM stands for Oligonucleotide Synthesizer designed for use in Microgravity, meaning that it’s a device that makes arbitrary DNA strands (of moderate length) in space. Cool eh? I’ve been working on this project for the last eight months with a wonderful team of fellow hackers as part of the Stanford Student Space Initiative, and I’d like to share what we’re doing, what we’ve already done, and where we’re going.

Why space? Well, first of all, space is cool. But more seriously, access to arbitrary DNA in space could accelerate research in a plethora of fields, and the ability to genetically engineer bacteria to produce substances (say on a martian colony) could mean the difference between death and a life-saving shot. In short, it’s hard to predict the exact DNA one might need for research or practical use before hand.

First, as Hackaday tends to be a little light on biology terminology, we need to get a little vocabulary out of the way to grease the ways of communication. If you have a Ph.D. in synthetic biology, you might want to skip this section. Otherwise, here are five quick terms that will make your brain bigger so stay with me!

Continue reading “OSM (Pronounced Awesome) Hardware Makes DNA In Space”

Raspberry Pi Radio Makes The Sweet Music Of Bacteria

We’ve noticed a lot of musical groups are named after insects. Probably has something to do with the Beatles. (If you study that for a while you’ll spot the homophonic pun, and yes we know that the Crickets inspired the name.) There’s also Iron Butterfly, Adam Ant, and quite a few more. A recent art project by a Mexican team — Micro-ritmos — might inspire some musical groups to be named after bacteria.

The group used geobacter — a kind of bacteria found in soil — a Raspberry Pi, an Arduino, and a camera to build an interesting device. As it looks at the bacteria and uses SuperCollider to create music and lighting from the patterns. You can see a video of Micro-ritmos, below.

Continue reading “Raspberry Pi Radio Makes The Sweet Music Of Bacteria”

Cyborg Photosynthetic Bacteria!

This is weird science. Researchers at Lawrence Berkeley National Laboratory have taken some normal bacteria and made them photosynthetic by adding cadmium sulfide nanoparticles. Cadmium sulfide is what makes the garden-variety photoresistor work. That’s strange enough. But the bacteria did the heavy lifting — they coated themselves in the inorganic cadmium — which means that they can continue to grow and reproduce without much further intervention.

Bacteria are used as workhorses in a lot of chemical reactions these days, and everybody’s trying to teach them new tricks. But fooling them into taking on inorganic light absorbing materials and becoming photosynthetic is pretty cool. As far as we understand, the researchers found a chemical pathway into which the electrons produced by the CdS would fit, and the bacteria took care of the rest. They still make acetic acid, which is their normal behavior, but now they produce much more when exposed to light.

If you want to dig a little deeper, the paper just came out in Science magazine, but it’s behind a paywall. But with a little searching, one can often come up with the full version for free. (PDF).

Or if you’d rather make electricity, instead of acetic acid, from your bacteria be our guest. In place of CdS, however, you’ll need a fish. Biology is weird.

Headline images credit: Peidong Yang