Leaky SMD Electrolytics? Try These Brute Force Removal Methods

When you say “recapping” it conjures up an image of a dusty old chassis with point-to-point wiring with a bunch of dried-out old capacitors or dodgy-looking electrolytics that need replacement. But time marches on, and we’re now at the point where recapping just might mean removing SMD electrolytics from a densely packed PCB. What do you do then?

[This Does Not Compute]’s answer to that question is to try a bunch of different techniques and see what works best, and the results may surprise you. Removal of SMD electrolytic caps can be challenging; the big aluminum can sucks a lot of heat away, the leads are usually pretty far apart and partially obscured by the plastic base, and they’re usually stuffed in with a lot of other components, most of which you don’t want to bother. [TDNC] previously used a hot-air rework station and liberally applied Kapton tape and aluminum foil to direct the heat, but that’s tedious and time-consuming. Plus, electrolytics sometimes swell up when heated, expelling their corrosive contents on the PCB in the process.

As brutish as it sounds, the solution might just be as simple as ripping caps off with pliers. This seems extreme, and with agree that the risk of tearing off the pads is pretty high. But then again, both methods seemed to work pretty well, and on multiple boards too. There’s a catch, though — the pliers method works best on caps that have already leaked enough of their electrolyte to weaken the solder joints. Twisting healthier caps off a PCB is likely to end in misery. That’s where brutal method number two comes in: hacking the can off the base with a pair of flush cutters. Once the bulk of the cap is gone, getting the leads off the pad is a simple desoldering job; just don’t forget to clean any released schmoo off the board — and your cutters!

To be fair, [This Does Not Compute] never seems to have really warmed up to destructive removal, so he invested in a pair of hot tweezers for the job, which works really well. But perhaps you’re not sure that you should just reflexively replace old electrolytics on sight. If so, you’re in pretty good company.

Continue reading “Leaky SMD Electrolytics? Try These Brute Force Removal Methods”

Learning About Capacitors By Rolling Your Own Electrolytics

Ever wonder what’s inside an electrolytic capacitor? Many of us don’t, having had at least a partial glimpse inside after failure of the cap due to old age or crossed polarity. The rest of us will have to rely on this behind-the-scenes demo to find out what’s inside those little aluminum cans.

Perhaps unsurprisingly, it’s more aluminum, at least for the electrolytics [Denki Otaku] rolled himself at the Nippon Chemi-Con R&D labs. Interestingly, both the anode and cathode start as identical strips of aluminum foil preprocessed with proprietary solutions to remove any oils and existing oxide layers. The strips then undergo electrolytic acid etching to create pits to greatly increase their surface area. The anode strips then get anodized in a solution of ammonium adipate, an organic acid that creates a thin aluminum oxide layer on the strip. It’s this oxide layer that actually acts as the dielectric in electrolytic capacitors, not the paper separator between the anode and cathode strips.

Winding the foils together with the paper separator is pretty straightforward, but there are some neat tricks even at the non-production level demonstrated here. Attachment of lead wires to the foil is through a punch and crimp operation, and winding the paper-foil sandwich is actually quite fussy, at least when done manually. No details are given on the composition of the electrolyte other than it contains a solvent and an organic acid. [Denki] took this as an invitation to bring along his own electrolyte: a bottle of Coke. The little jelly rolls get impregnated with electrolyte under vacuum, put into aluminum cans, crimped closed, and covered with a heat-shrink sleeve. Under test, [Denki]’s hand-rolled caps performed very well. Even the Coke-filled caps more or less hit the spec on capacitance; sadly, their ESR was way out of whack compared to the conventional electrolyte.

There are plenty more details in the video below, although you’ll have to pardon the AI voiceover as it tries to decide how to say words like “anode” and “dielectric”; it’s a small price to pay for such an interesting video. It’s a much-appreciated look at an area of the industry that few of us get to see in detail.

Continue reading “Learning About Capacitors By Rolling Your Own Electrolytics”

Sailor Hat Adds Graceful Shutdown To Pis

Even though Windows and other operating systems constantly remind us to properly eject storage devices before removing them, plenty of people won’t heed those warnings until they finally corrupt a drive and cause all kinds of data loss and other catastrophes. It’s not just USB jump drives that can get corrupted, though. Any storage medium can become unusable if certain actions are being taken when the power is suddenly removed. That includes the SD cards on Raspberry Pis, too, and if your power isn’t reliable you might consider this hat to ensure they shut down properly during power losses.

The Raspberry Pi hat is centered around a series of supercapacitors which provide power for the Pi temporarily. The hat also communicates with the Pi to let it know there is a loss of power, so that the Pi can automatically shut itself down in that situation to prevent corrupting the memory card. The hat is more than just a set of backup capacitors, though. The device is capable of taking input power from a wide range of sources and filtering it for the power requirements of the Pi, especially in applications like boats and passenger vehicles where the input power might be somewhat noisy. There’s an optocoupled CAN bus interface as well for those looking to use this for automotive applications.

The entire project is also available on the project’s GitHub page for those wishing to build their own. Some sort of power backup is a good idea for any computer, though, not just Raspberry Pis. We’ve seen uninterruptible power supplies (UPS) with enough power to run an entire house including its computers, to smaller ones that’ll just keep your Internet online during a power outage.

Continue reading “Sailor Hat Adds Graceful Shutdown To Pis”

Build A Tesla Coil With Just Three Components

Tesla coils are beautiful examples of high voltage hardware, throwing sparks and teaching us about all kinds of fancy phenomena. They can also be quite intimidating to build. [William Fraser], however, has come up with a design using just three components.

It’s a simplified version of the “Slayer Exciter” design, which nominally features a transistor, resistor and LED, along with a coil, and runs on batteries. [William] learned that adding a capacitor in parallel with the batteries greatly improved performance, and allowed the removal of the LED without detriment. [William] also learned that the resistor was not necessary either, beyond starting the coil oscillating.

The actual 3-component build uses a 10 farad supercapacitor as a power source, hooked up to a 2N3904 NPN transistor and an 85-turn coil. It won’t start oscillating on its own, but when triggered by a pulse of energy from a piezo igniter, it jerks into life. The optimized design actually uses the shape of the assembled component leads to act as the primary coil. The tiny Tesla coil isn’t big and bold enough to throw big sparks, but it will light a fluorescent tube at close proximity.

If you like your Tesla coils musical, we have those too.

Continue reading “Build A Tesla Coil With Just Three Components”

Protect Vintage Gear With Easy Capacitor Reforming

Having acquired some piece of old electronic equipment, be it a computer, radio, or some test gear, the temptation is there to plug it in as soon as you’ve lugged it into the ‘shop. Don’t be so hasty. Those power supplies and analog circuits often have a number of old aluminium electrolytic capacitors of unknown condition, and bad things can happen if they suddenly get powered back up again. After a visual inspection, to remove and replace any with obvious signs of leakage and corrosion, those remaining may still not be up to their job, with the oxide layers damaged over time when sat idle, they can exhibit lower than spec capacitance, voltage rating or even be a dead short circuit. [TechTangents] presents for us a guide to detecting and reforming these suspect capacitors to hopefully bring them, safely, back to service once more.

Capacitor failure modes are plentiful

When manufactured, the capacitors are slowly brought up to operating voltage, before final encapsulation, which allows the thin oxide layer to form on the anode contact plate, this is an electrically driven chemical process whereby a portion of the electrolyte is decomposed to provide the needed oxygen ions. When operating normally, with a DC bias applied to the plates, this oxidation process — referred to as ‘self-healing’ — continues slowly, maintaining the integrity of the oxide film, and slowly consuming the electrolyte, which will eventually run dry and be unable to sustain the insulating oxide layer.

If left to sit un-powered for too long, the anodic oxide layer will decay, resulting in reduced operating voltage. When powered up, the reforming process will restart, but this will be in an uncontrolled environment, resulting in a lot of excess heat and gases being vented. It all depends on how thin the oxide layer got and if holes have started to form. That is, if there is any electrolyte left to react – it may already be far too late to rescue.

If the oxide layer is sufficiently depleted, the capacitor will start to conduct, with a resultant self-heating and runaway thermal decomposition. They can explode violently, which is why there are score marks at the top of the can to act as a weak point, where the contents can burst through. A bit like that ‘egg’ scene in Aliens!

Yucky leaky capacitor. Replace these! and clean-up that conductive goo too.

The ‘safe’ way to reform old capacitors is to physically remove them from the equipment, and apply a low, controlled voltage below the rated value to keep the bias current at a low value, perhaps just 2 mA. Slowly, the voltage can be increased to push the current back up to the initial forming level, so long as the current doesn’t go too high, and the temperature is within sensible bounds. The process ends when the applied voltage is at the rated value and the current has dropped off to low leakage values.

A word of warning though, as the ESR of the reformed caps could be a little higher than design, which will result in higher operating temperature and potentially increased ripple current in power supply applications.

We’re really glossing over this subject fast here, but [TechTangents] was kind enough to link to some fine capacitor-related reading for those who need a primer. Here is a US DoD handbook for reforming capacitors with advice on storage shelf life, some tech notes on using electrolytic capactors from chemi-con, and a general capacitor guide from TDK. Reforming caps is nothing new, here’s an previous article about repairs, and something a bit more recent.

Continue reading “Protect Vintage Gear With Easy Capacitor Reforming”

DIY capacitor leakage tester nestled among neighbours all mounted underneath a shelf

DIY Capacitor Leakage Tester With A Professional Finish

[Manuel Caldeira] has built a nice electronics work area that would be the envy of many, complete with an under-shelf rail of custom-built instruments that are specific to the needs of areas of electronics that [Manuel] is involved with. The highlighted project here is a capacitor leakage tester, which is very handy for sorting through piles of old parts looking for anything still within spec, or just verifying a part on a board is the culprit you suspect it is.

The thing is, certain types of capacitors have a limited life both in operation and in storage. Usually, we’re talking about electrolytics here, where the electrolyte solution can leak out or dry out, but also the passive oxide layer on the anode plate can deteriorate if the device is left unpowered for long periods — the oxide disintegrates, and the capacitor will start to leak current. Eventually, the breakdown can be bad enough for the capacitor to conduct so well that it overheats and the result can be a surprisingly violent experience. So, if you deal with capacitors a lot, especially electrolytics, then a leakage tester is a very good instrument to own.

We like [Manuel]’s construction method here, with custom PCBs nestled inside a simple bent aluminium enclosure. No need for a top or sides, as these, are intended to bolt underneath a shelf, and butt up against their neighbor. The front panel graphics are done in a simple but very effective manner, using printable sticker sheets, with a clear adhesive over-sheet. They certainly have a professional finish, and this is definitely a construction method worth considering.

For those a little unfamiliar with this important component, why not leap into some theory with this handy dive into the simple parallel plate capacitor? Next, may we suggest a little overview of the different capacitor types and how to best make use of them?

Continue reading “DIY Capacitor Leakage Tester With A Professional Finish”

Making Variable Capacitors By Stretching Aluminium Cans

Sometimes when you need a component, the best way to get it is by building it yourself. [North Carolina Prepper] did just that, creating his own trombone-style variable capacitor by stretching some aluminium beverage cans. 

The requirement was for a 26 pF to 472 pF capactitor, for a radio transmitting from 7 MHz to 30MHz. The concept was to use two beverage cans, one sliding inside the other, as a capacitor, with an insulating material in between.

To achieve this, a cheap exhaust-pipe expanding tool was used to stretch a regular can to the point where it would readily slide over an unmodified can, plus some additional gap to allow for a plastic insulating sheet in between. Annealing the can is important to stop it tearing up, but fundamentally, it’s a straightforward process.

The resulting trombone capacitor can readily be slid in and out to change its capacitance. The build as seen here achieved 33 pF to 690 pF without too much hassle, not far off the specs [North Carolina Prepper] was shooting for.

Radio hams are very creative at building their own equipment, especially when it comes to variable capacitors. Video after the break.

Continue reading “Making Variable Capacitors By Stretching Aluminium Cans”