The Electric Vehicles Of EMF Camp: A Sinclair C5, (Almost) As It Should Have Been

Most Hackaday readers will have heard of [Clive Sinclair], the British inventor and serial entrepreneur whose name appeared on some of the most fondly-recalled 8-bit home computers. If you aren’t either a Sinclair enthusiast or a Brit of a Certain Age though, you may not also be aware that he dabbled for a while in the world of electric vehicles. In early 1985 he launched the C5, a sleek three-wheeler designed to take advantage of new laws governing electrically assisted bicycles.

The C5 was a commercial failure because it placed the rider in a vulnerable position almost at road level, but in the decades since its launch it has become something of a cult item. [Rob] fell for the C5 when he had a ride in one belonging to a friend, and decided he had to have one of his own. The story of his upgrading it and the mishaps that befell it along the way are the subject of his most recent blog post, and it’s not a tale that’s over by any means.

The C5 was flawed not only in its riding position, the trademark Sinclair economy in manufacture manifested itself in a minimalist motor drive to one rear wheel only, and a front wheel braking system that saw bicycle calipers unleashed on a plastic wheel rim. The latter was sorted with an upgrade to a disc brake, but the former required a bit more work. A first-generation motor and gearbox had an unusual plywood housing, and the C5 even made it peripherally into our review of EMF Camp 2016, but it didn’t quite have the power to start the machine without pedaling. Something with more grunt was called for, and it came in the form of a better gearbox which once fitted allowed the machine to power its way to the Tindie Cambridge meetup back in April. Your scribe had a ride, but all was not well. After a hard manual pedal back across Cambridge to the Makespace it was revealed that the much-vaunted Lotus chassis had lived up to the Sinclair reputation for under-engineering, and bent. Repairs are under way for the upcoming EMF Camp 2018, where we hope we’ll even see it entering the Hacky Racers competition.

Charging An Electric Supercar With Lemons, Kids, And The Sun

First things first: the tease on this video, that an electric supercar can be charged from a massive lemon battery array, is exactly that – a tease. Despite that, it makes for an interesting story and a great attempt to get kids exposed to science and engineering.

The story goes that [Mark] was approached by Volkswagen to help charge the batteries on their entry for the upcoming Pikes Peak International Hill Climb, the annual “Race to the Clouds” in Colorado. Racers are tortured by a 4,700′ (1,440 m) vertical climb over a 12.42 mile (20 km) course that features 156 switchback turns. Volkswagen’s entry is an electric supercar, and they sent [Mark] a portable battery cart to charge up the best way he saw fit.

Teaming up with [William Osman], the first attempt was a massive array of lemon cells, made with waterjet-cut strips of zinc and copper held in a plywood frame. Studded with 1,232 lemons, the battery performed just about as well as you’d expect it would. Plan B was cute, and another of [Mark]’s attempts to pad his “Funnest Uncle Ever” score a bit. He devised a zip line with regenerative braking to charge a cordless drill battery, and then indirectly harvested the energy in the battery by turning it into lemonade for a bunch of kids. The sugared-up kids rode the zip line till the battery was charged.

That was still a drop in the bucket, though, so Plan C saw [Mark] install a large solar array on his roof; the tie-in here was that the lemon-powered kids got to design a cleaning system for the solar array. A weak link, to be sure, but the kids had fun, and we can’t deny that the car will at least be partially lemon-powered when it heads up the hill.

Continue reading “Charging An Electric Supercar With Lemons, Kids, And The Sun”

The Electric Vehicles Of EMF Camp

There is joy in the hearts of British and European hardware and software hackers and makers, for this is an EMF Camp year. Every couple of years, our community comes together for three summer days in a field somewhere, and thanks to a huge amount of work from its organizers and a ton of volunteers, enjoys an entertaining, stimulating, and engrossing hacker camp.

One of the features of a really good hacker camp are the electric vehicles. Not full-on electric cars, but personal camp transport. Because only the technically inept walk, right? From Hitchin’s Big Hak to TOG’s duck, with an assortment of motorized armchairs and beer crates thrown in, these allow the full creativity of the hardware community free rein through the medium of overdriven motors and cheap Chinese motor controllers.

This year at EMF Camp there will be an added dimension that should bring out a new wave of vehicles, there will be a Hacky Racers event. Novelty electric vehicles will compete for on-track glory, will parade around the camp, and will no doubt also sometimes release magic smoke. There is still plenty of time to enter, so if you’re going to EMF, get building!

We have an interest in these little electric vehicles, not least because there may well be a Hackaday-branded machine on the tarmac. We’d like to feature some of them over the weeks running up to the event, so if you are building one and have a write-up handy, please tell us about it in the comments. Charge your batteries, and we’ll see you there!

Header image: [Mark Mellors], with permission.

Open Source High Power EV Motor Controller

For anyone with interest in electric vehicles, especially drives and control systems for EV’s, the Endless-Sphere forum is the place to frequent. It’s full of some amazing projects covering electric skateboards to cars and everything in between. [Marcos Chaparro] recently posted details of his controller project — the VESC-controller, an open source controller capable of driving motors up to 200 hp.

[Marcos]’s controller is a fork of the VESC by [Benjamin Vedder] who has an almost cult following among the forum for “creating something that all DIY electric skateboard builders have been longing for, an open source, highly programmable, high voltage, reliable speed controller to use in DIY eboard projects”. We’ve covered several VESC projects here at Hackaday.

While [Vedder]’s controller is aimed at low power applications such as skate board motors, [Marcos]’s version amps it up several notches. It uses 600 V 600 A IGBT modules and 460 A current sensors capable of powering BLDC motors up to 150 kW. Since the control logic is seperated from the gate drivers and IGBT’s, it’s possible to adapt it for high power applications. All design files are available on the Github repository. The feature list of this amazing build is so long, it’s best to head over to the forum to check out the nitty-gritty details. And [Marcos] is already thinking about removing all the analog sensing in favour of using voltage and current sensors with digital outputs for the next revision. He reckons using a FPGA plus flash memory can replace a big chunk of the analog parts from the bill of materials. This would eliminate tolerance, drift and noise issues associated with the analog parts.

[Marcos] is also working on refining a reference design for a power interface board that includes gate drivers, power mosfets, DC link and differential voltage/current sensing. Design files for this interface board are available from his GitHub repo too. According to [Marcos], with better sensors and a beefier power stage, the same control board should work for motors in excess of 500 hp. Check out the video after the break showing the VESC-controller being put through its paces for an initial trial.

Continue reading “Open Source High Power EV Motor Controller”

DIY Electric Beach Luge Is A Thrill

[John Dingley] describes his Electric Beach Luge Project as an exciting mashup between “a downhill luge board, a kite surf buggy, a go-kart, and a Star Wars Land Speeder” and it’s fresh from a successful test run. What’s not to like? The DIY experimental vehicle was made to run on long, flat, firm stretches of sand while keeping the rider as close to the ground as possible. The Beach Luge is mainly intended to be ridden while lying on one’s back, luge-style, but it’s also possible to lay prone in the “Superman” position.

The whole unit was built from the ground up, but [John] points out that the design isn’t particularly complicated. There is no fancy self-balancing or suspension involved and steering is simple. A tube bender and a welder took care of making the frame. The rest is mainly used go-kart parts obtained cheaply from eBay, driven by a 500W 24V electric motor from an old Golf Kart. Like a luge sled, the goal is for the vehicle itself to interfere as little as possible between the user and the earth to make the experience as visceral as it can be.

You can see it in action in the two videos embedded below, but even more videos and some great pictures are available on the project’s page. [John] says it’s great fun to ride, but feels it could use twice as much power!

Continue reading “DIY Electric Beach Luge Is A Thrill”

Solar Powered Camper Is A Magic Bus Indeed

There’s no doubt that Volkswagen’s offerings in the 1960s and early 1970s were the hippie cars of choice, with the most desirable models being from the Type 2 line, better known as the Microbus. And what could be even hippier than
converting a 1973 VW Microbus into a solar-electric camper?

For [Brett Belan] and his wife [Kira], their electric vehicle is about quality time with the family. And they’ll have plenty of time, given that it doesn’t exactly ooze performance like a Tesla. Then again, a Tesla would have a hard time toting the enormous 1.2 kW PV panel on its roof like this camper can, and would look even sillier with the panel jacked up to maximize its solar aspect. [Brett] uses the space created by the angled array to create extra sleeping space like the Westfalia, a pop-top VW camper. The PV array charges a bank of twelve lead-acid golf cart batteries which power an AC motor through a 500-amp controller. Interior amenities include a kitchenette, dining table, and seating that cost as much as the van before conversion. There’s no word on interior heat, but honestly, that never was VW’s strong suit — we speak from bitter, frostbitten experience here.

As for being practical transportation, that just depends on your definition of practical. Everything about this build says “labor of love,” and it’s hard to fault that. It’s also hard to fault [Brett]’s choice of platform; after all, vintage VWs are the most hackable of cars.

Continue reading “Solar Powered Camper Is A Magic Bus Indeed”

Semisolid Lithium Ion Batteries Promise Better Cars, Solar

Lithium-ion batteries make possible smaller and lighter electronics. Unfortunately, they are also costly to produce. In a conventional lithium-ion battery, many thin layers create the finished product much like filo dough in baklava. A startup company called 24M thinks they have the answer to making less expensive lithium-ion batteries: a semisolid electrode made by mixing powders and liquid to form an electrolyte goo.

Not only will the batteries be cheaper and faster to create, but the cost of the factory will be less. Currently, 24M has a pilot manufacturing line, but by 2020 they expect to scale to produce batteries that cost less than $100 per kilowatt hour (today’s costs are about $200 to $250 for conventional batteries). Under $100, the batteries become competitive with the cost of internal combustion engines, according to the article.

Continue reading “Semisolid Lithium Ion Batteries Promise Better Cars, Solar”