SGX Deprecation Prevents PC Playback Of 4K Blu-ray Discs

This week Techspot reported that DRM-laden Ultra HD Blu-ray Discs won’t play anymore on computers using the latest Intel Core processors. You may have skimmed right past it, but the table on page 51 of the latest 12th Generation Intel Core Processor data sheet (184 page PDF) informs us that the Intel Software Guard Extensions (SGX) have been deprecated. These extensions are required for DRM processing on these discs, hence the problem. The SGX extensions were introduced with the sixth generation of Intel Core Skylake processors in 2015, the same year as Ultra HD Blu-ray, aka 4K Blu-ray. But there have been numerous vulnerabilities discovered in the intervening years. Not only Intel, but AMD has had similar issues as we wrote about in October.

This problem only applies to 4K Blu-ray discs with DRM. Presumably any 4K discs without DRM will still play, and of course you can still play the DRM discs on older Intel processors. Do you have a collection of DRM 4K Blu-ray discs, and if so, do you play them via your computer or a stand-alone player?

Peering Into The Murky Depths Of Alder Lake

The winds of change are in the air for CPUs. Intel has long lorded over the computing world, and they remain a force to contend with, but many challengers gather at their gates. AMD, ARM, IBM, and other X86 designs sense a moment of weakness. In response, Intel released their Alder Lake platform with high-performance and high-efficiency cores, known as Golden Cove and Gracemont, respectively. [Clamchowder] and [cheese] have written up as many details as they were able to suss out about Gracemont.

ARM has done a multi-multi core design (big.LITTLE) for several years where they have a mix of high-power, high-performance cores and smaller, low-power cores. This allows the scheduler to make tradeoffs between power and performance. Typically the smaller cores in an ARM design are simpler in-order processors, having more in common with a microcontroller than with a full-scale desktop core. Many people have made an obvious comparison with the apparent similarities between ARM’s approach and Intel’s new offerings as Gracemont is based on Intel’s old Atom core, a low-power single issue, in-order processor. Continue reading “Peering Into The Murky Depths Of Alder Lake”

Intel RealSense D435 Depth Camera

RealSense No Longer Makes Sense For Intel

We love depth-sensing cameras and every neat hack they enabled, but this technological novelty has yet to break through to high volume commercial success. So it was sad but not surprising when CRN reported that Intel has decided to wind down their RealSense product line.

As of this writing, one of the better confirmations for this report can be found on the RealSense SDK GitHub repository README. The good news is that core depth-sensing RealSense products will continue business as usual for the foreseeable future, balanced by the bad news that some interesting offshoots (facial authentication, motion tracking) will be declared “End of Life” immediately and phased out over the next six months.

This information tells us while those living out on the bleeding edge will have to scramble, there is no immediate crisis for everyone else, whether they be researchers, hobbyists, or product planners. But this also means there will be no future RealSense cameras, kicking off many “What’s Next?” discussions in various communities. Like this thread on ROS (Robot Operating System) Discourse.

Three popular alternatives offer distinctly different tradeoffs. The “Been Around The Block” name is Occipital, with their more expensive Structure Pro sensor. The “Old Name, New Face” option is Microsoft Azure Kinect, the latest non-gaming-focused successor to the gaming peripheral that started it all. And let’s not forget OAK-D as the “New Kid On The Block” that started with a crowdfunding campaign and building an user community by doing things like holding contests. Each of these will appeal to a different niche, and we’ll keep our eye open in the future. Let’s see if any of them find the success that eluded the original Kinect, Google’s Tango, and now Intel’s RealSense.

[via Engadget]

Installing Linux Like It’s 1989

A common example of the sheer amount of computing power available to almost anyone today is comparing a smartphone to the Apollo guidance computer. This classic computer was the first to use integrated circuits so it’s fairly obvious that most modern technology would be orders of magnitude more powerful, but we don’t need to go back to the 1960s to see this disparity. Simply going back to 1989 and getting a Compaq laptop from that era running again, while using a Raspberry Pi Zero to help it along, illustrates this point well enough.

[befinitiv] was able to get a Raspberry Pi installed inside of the original computer case, and didn’t simply connect the original keyboard and display and then call it a completed build. The original 286 processor is connected to the Pi with a serial link, so both devices can communicate with each other. Booting up the computer into DOS and running a small piece of software allows the computer into a Linux terminal emulator hosted on the Raspberry Pi. The terminal can be exited and the computer will return back to its original DOS setup. This also helps to bypass the floppy disk drive for transferring files to the 286 as well, since files can be retrieved wirelessly on the Pi and then sent to the 286.

This is quite an interesting mashup of new and old technology, and with the Pi being around two orders of magnitude more powerful than the 286 and wedged into vacant space inside the original case, [befinitiv] points out that this amalgamation of computers is “borderline useful”. It’s certainly an upgrade for the Compaq, and for others attempting to get ancient hardware on the internet, don’t forget that you can always use hardware like this to access Hackaday’s retro site.

Continue reading “Installing Linux Like It’s 1989”

Will We Soon Be Running Linux On SiFive Cores Made By Intel?

There’s an understandably high level of interest in RISC-V processors among our community, but while we’ve devoured the various microcontroller offerings containing the open-source core it’s fair to say we’re still waiting on the promise of more capable hardware for anything like an affordable price. This could however change, as the last week or so has seen a flurry of interest surrounding SiFive, the fabless semiconductor company that has pioneered RISC-V technology. Amid speculation of a $2 billion buyout offer from the chip giant Intel it has been revealed that the company best known for the x86 line of processors has licensed the SiFive portfolio for its 7nm process. This includes their latest and fastest P550 64-bit core, bringing forward the prospect of readily available high-power RISC-V computing. Your GNU/Linux box could soon have a processor implementing an open-source ISA, without compromising too much on speed and, we hope, price.

All this sounds pretty rosy, but there is of course a downer for open-source hardware enthusiasts. These chips may rely on some open-source technologies, but sadly they will not themselves be open-source chips as there will be plenty of proprietary IP contained within them. We can thus only hope that Intel see fit to provide the same level of Linux support for them as they do for their x86 ranges, and we’re not left in the same situation with respect to ongoing support as we are with so many other chips. Meanwhile it’s worth remembering that SiFive are not the only player in the world of RISC-V cores, so it’s likely that competitors to the P550 and its stablemates will not be far behind.

If you’d like a more in-depth explanation of the true open-source nature of a RISC-V chip, we’ve featured something on that theme before.

Header image: Gareth Halfacree, CC BY-SA 2.0.

Where Are All The Cheap X86 Single Board PCs?

If we were to think of a retrocomputer, the chances are we might have something from the classic 8-bit days or maybe a game console spring to mind. It’s almost a shock to see mundane desktop PCs of the DOS and Pentium era join them, but those machines now form an important way to play DOS and Windows 95 games which are unsuited to more modern operating systems. For those who wish to play the games on appropriate hardware without a grubby beige mini-tower and a huge CRT monitor, there’s even the option to buy one of these machines new: in the form of a much more svelte Pentium-based PC104 industrial PC.

Continue reading “Where Are All The Cheap X86 Single Board PCs?”

Intel’s Forgotten 1970s Dual Core Processor

Can you remember when you received your first computer or device containing a CPU with more than one main processing core on the die? We’re guessing for many of you it was probably some time around 2005, and it’s likely that processor would have been in the Intel Core Duo family of chips. With a dual-core ESP32 now costing relative pennies it may be difficult to grasp in 2020, but there was a time when a multi-core processor was a very big deal indeed.

What if we were to tell you that there was another Intel dual-core processor back in the 1970s, and that some of you may even have owned one without ever realizing it? It’s a tale related to us by [Chris Evans], about how a team of reverse engineering enthusiasts came together to unlock the secrets of the Intel 8271.

If you’ve never heard of the 8271 you can be forgiven, for far from being part of the chip giant’s processor line it was instead a high-performance floppy disk controller that appeared in relatively few machines. An unexpected use of it came in the Acorn BBC Micro which is where [Chris] first encountered it. There’s very little documentation of its internal features, so an impressive combination of decapping and research was needed by the team before they could understand its secrets.

As you will no doubt have guessed, what they found is no general purpose application processor but a mask-programmed dual-core microcontroller optimized for data throughput and containing substantial programmable logic arrays (PLAs). It’s a relatively large chip for its day, and with 22,000 transistors it dwarfs the relatively svelte 6502 that does the BBC Micro’s heavy lifting. Some very hard work at decoding the RMO and PLAs arrives at the conclusion that the main core has some similarity to their 8048 architecture, and the dual-core design is revealed as a solution to the problem of calculating cyclic redundancy checks on the fly at disk transfer speed. There is even another chip using the same silicon in the contemporary Intel range, the 8273 synchronous data link controller simply has a different ROM. All in all the article provides a fascinating insight into this very unusual corner of 1970s microcomputer technology.

As long-time readers will know, we have an interest in chip reverse engineering.