Mount Sopris

Design A Microcontroller With Security In Mind

There are many parts to building a secure networked device, and the entire industry is still learning how to do it right. Resources are especially constrained for low-cost microcontroller devices. Would it be easier to build more secure devices if microcontrollers had security hardware built-in? That is the investigation of Project Sopris by Microsoft Research.

The researchers customized the MediaTek MT7687, a chip roughly comparable to the hacker darling ESP32. The most significant addition was a security subsystem. It performs tasks notoriously difficult to do correctly in software, such as random number generation and security key storage. It forms the core of what they called the “hardware-based secure root of trust.”

Doing these tasks in a security-specific module solves many problems. If a key is not stored in memory, a memory dump can’t compromise what isn’t there. Performing encryption/decryption in task-specific hardware makes it more difficult to execute successful side-channel attacks against them. Keeping things small keeps the cost down and also eases verifying correctness of the code.

But the security module can also be viewed from a less-favorable perspective. Its description resembles a scaled-down version of the Trusted Platform Module. As a self-contained module running its own code, it resembles the Intel Management Engine, which is currently under close scrutiny.

Will we welcome Project Sopris as a time-saving toolkit for building secure networked devices? Or will we become suspicious of hidden vulnerabilities? The researchers could open-source their work to ease these concerns, but value of their work will ultimately depend on the fast-moving field of networked device security.

Do you know of other efforts to add hardware-assisted security to microcontrollers? Comment below or let us know via the tip line!

[via Wired]

Image of Mount Sopris, namesake of the project, by [Hogs555] (CC-BY 4.0)

 

Internet Of Things Opens Possibilities

While a lot of hardware gets put on the “Internet of Things” with only marginal or questionable benefits (or with hilariously poor security), every now and then a project makes use of this new platform in a way that illustrates the strengths of IoT. [ThingEngineer] turned to this platform as a cost-effective solution for an automatic gate, since new keyfobs were too expensive and a keypad was not an option.

Using an Electric IMP, [ThingEngineer] began by installing his IoT patch into the LiftMaster gate control box. This particular gate has easily accessible points that the controller can access to determine the gate’s status, so from there, an API was written to do the heavy lifting. A web server was deployed as well, so anyone with access can use a smartphone or other device to open the gate.

For anyone else looking to deploy a similar IoT solution, [ThingEngineer] has put all of the project code, schematics, and a thorough write-up about the project on his GitHub page. There are many useful ways to get on board the Internet of Things, though; so many that it’s been possible to win a substantial prize for using it in a creative way.

IoTP: The Internet Of Toilet Paper

Our first impression of this IoT toilet paper roll was that somebody was pulling our leg. Watching the infomercial-esque video below is alternately hilarious and horrifying, but it leaves you with the unmistakable feeling that this is all a joke, and a pretty good one at that.  Right up until you get to the big Kimberly-Clark logo at the end, that is, and you realize that the international paper concern must be looking at this seriously.

When you read [zvizvi]’s Instructables post, you find out that this project is indeed a legitimate attempt to meld an Amazon Dash button with your toilet paper dispenser. For his proof-of-concept build, [zvizvi] started with a gag “talking TP” roll off eBay, designed to play back a voice clip when the paper is used. It had all the right guts, and being just the size for a Wemos Mini and an accelerometer for motion detection was a bonus. The smart spindle can tally the amount of paper used, so you’ll never be caught without a square to spare. And of course, critical TP usage parameters are uploaded to a cloud server, so that more toilet paper can be rushed to your door when you’re getting low.

The whole idea, including justification based on monitoring TP use as a proxy for bowel health, seems ridiculous, but we suspect there may be some brilliance here. Joke if you will, but in the end it’s probably better than an Internet of Farts.

Continue reading “IoTP: The Internet Of Toilet Paper”

Dumb Box? Make It Really Smart!

[Stephen Harrison]’s Really Smart Box is a great concept, it’s simultaneously a simple idea while at the same time being super clever. The Really Smart Box isn’t really a box; it’s a drop-in platform that can be made any size, intended to turn any dumb storage box into one that helps manage and track levels and usage of any sort of stock or consumable.

It does this by measuring the weight of the stuff piled on top of it, while also monitoring temperature and humidity. The platform communicates this information wirelessly to a back end, allowing decisions to be made about stock levels, usage, and monitoring of storage conditions. It’s clearly best applied to consumables or other stock that comes and goes. The Really Smart Box platform is battery-powered, but spends most of its time asleep to maximize battery life. The prototype uses the SigFox IoT framework for the wireless data, which we have seen before in a wireless swimming pool monitor.

This is still just a prototype and there are bugs to iron out, but it works and [Stephen] intends to set-and-forget the prototype into the Cambridge Makespace with the task of storing and monitoring 3D printer filament. A brief demo video is embedded below.

Continue reading “Dumb Box? Make It Really Smart!”

IoT Garage Door Opener From Scrap

[Hans Nielsen] has a couple roommates, and his garage has become a catch-all for various items. And like any good hacker’s garage, it boasts an IoT controlled garage door opener. It had a problem though, it used a Particle Photon – a popular IoT board that required internet access and a web server to operate. So [Hans] raided his roommate’s spare parts bin and set-forth to rebuild it!

One of his main goals was to make something that did not require internet access to operate. Anyone connected to the local WiFi should be able to open and close the door via a web interface, and he would give our good friend [Linus Torvalds] a call to make it happen. The key component in the build is the C.H.I.P SBC that made the news a while back for being ridiculously cheap.

Be sure to check out [Han’s] blog if you’re at all interested in working with the C.H.I.P. He does a fantastic job of documenting the ins and outs of getting a project like this working.

Repair Job Fixes Compressor, Gets It Online

We’ll never cease to be amazed at the things people try to put on the Internet of Things. Some are no-brainers, like thermostats, security cameras, and garage door openers. Others, like washing machines and refrigerators, are a little on the iffy side, but you can still make a case for them. But an IoT air compressor? What’s the justification for such a thing?

As it turns out, [Boris van Galvin] had a pretty decent reason for his compressor hacks, and it appears that the IoT aspect was one of those “why not?” things. Having suffered the second failure of his compressor’s mechanical pressure switch in a year, and unwilling to throw good money after the $120 that went into replacing the first contactor, [Boris] looked for a cheaper and more interesting way to control the compressor. An ESP8266 dev board made interfacing the analog pressure sensor a snap, and while he was at it, [Boris] added a web interface with a nice graphical air pressure gauge and some on-off controls. Now he can set the pressure using his phone and switch it off in the middle of the night without going outside. That’s an IoT win right there.

No air compressor? No worries — build your own from an old fridge. The non-IoT kind, preferably.

The Internet Of Jack-O’-Lanterns

As the candy rush fades, the Halloween hacks continue pouring in. [Jeremy S Cook] has taken a few fundamental concepts and dressed them up inside the smartest pumpkin on the block.

This pumpkin has a WEMOS D1 Mini ESP8266 brain, LED eyes in place of a candle for illumination, and a small USB power bank for power. The code [Cook] is using is a modified sketch by YouTuber [Innovative Tom], which creates a server on your network — don’t forget to insert your network credentials! — that enable control of the LEDs from your computer or smart phone.

[Cook] has wired the LEDs to the relevant pins on the D1 Mini, zip-tied the battery and board together and stuff them in a plastic bag to keep them dry. Stick that into the pumpkin, hot glue the LEDs in place, and test it out!

Continue reading “The Internet Of Jack-O’-Lanterns”