A Modern Battery For A Classic Laptop

Aside from their ability to operate fairly well in extreme temperatures, lead-acid batteries don’t have many benefits compared to more modern battery technology. They’re heavy, not particularly energy dense, have limited charge cycles, and often can’t be fully discharged without damage or greatly increased wear. With that in mind, one can imagine that a laptop that uses a battery like this would be not only extremely old but also limited by this technology. Of course, in the modern day we can do a lot to bring these retro machines up to modern standards like adding in some lithium batteries to this HP laptop.

Simply swapping the batteries in this computer won’t get the job done though, as lead-acid and lithium batteries need different circuitry in order to be safe while also getting the maximum amount of energy out. [CYUL] is using a cheap UPS module from AliExpress which comes with two 18650 cells to perform this conversion, although with a high likelihood of counterfeiting in this market, the 18650s were swapped out with two that were known to be from Samsung. The USB module also needs to be modified a bit to change the voltage output to match the needs of the HP-110Plus, and of course a modernized rebuild like this wouldn’t be complete without a USB-C port to function as the new power jack.

[CYUL] notes at the end of the build log that even without every hardware upgrade made to this computer (and ignoring its limited usefulness in the modern world) it has a limited shelf life as the BIOS won’t work past 2035. Hopefully with computers like this we’ll start seeing some firmware modifications as well that’ll let them work indefinitely into the future. For modern computers we’ll hope to avoid the similar 2038 problem by switching everything over to 64 bit systems and making other software updates as well.

Mods Turn Junk UPS Into A Long-Endurance Beast

If you’ve got a so-called uninterruptible power supply (UPS) on your system, you’re probably painfully aware that the “uninterruptible” part has some pretty serious limits. Most consumer units are designed to provide power during a black out only long enough to gracefully shut down your system. But with a few hacks like these, you can stretch that time out and turn it into a long-endurance UPS.

As many good stories do, this one starts in the trash, where [MetaphysicalEngineer] spotted an APC home office-style UPS. It was clearly labeled “broken,” but that just turned out to be a dead battery. While he could have simply replaced it with a 12-volt sealed lead-acid battery, [Meta] knew that his computer setup would quickly deplete the standard battery. A little testing showed him that a car battery would extend the run time significantly, especially if he threw in some extra cooling for the onboard inverter.

His final design uses a marine deep-cycle battery in a plastic battery box with the UPS mounted on top. The vacated battery compartment made a great place to add a cooling fan, along with a clever circuit to turn it on only when the beeper on the UPS sounds, with a bonus volume control for the annoying sound. He also added accessories to the battery box top, including a voltmeter, a USB charger, and a switched 12-volt power outlet. And kudos for the liberal use of fuses in the build; things could get spicy otherwise. The video below shows the entire build along with all the testing. [MetaphysicalEngineer] managed to triple the estimated runtime for the load he’s trying to power, so it seems like a win to us.

If your needs run more toward keeping your networking gear running through a blackout, you might want to check out this inverter-less DC UPS.

Continue reading “Mods Turn Junk UPS Into A Long-Endurance Beast”

Toddler EV Gets Big Boy Battery Upgrade

No matter the type of vehicle we drive, it has a battery. Those batteries wear out over time. Even high end EV’s have batteries with a finite life. But when your EV uses Lead Acid batteries, that life is measured on a much shorter scale. This is especially true when the EV is driven by a driver that takes up scarcely more space in their EV than a stuffed tiger toy! Thankfully, the little girl in question has a mechanic:

A 3d printed adapter sends go-juice to the DC-DC converter

Her daddy, [Brian Lough], who documented the swift conversion of his daughter’s toy truck from Lead Acid to Li-Ion in the video which you can see below the break.

Facing challenges similar to that of actual road worthy passenger vehicles, [Brian] teamed up with [bitluni] to solve them. The 12 V SLA battery was being replaced with a 20 V Li-Ion pack from a power tool. A 3d printed adapter was enlisted to break out the power pins on the pack. The excessive voltage was handled with a DC-to-DC converter that, after a bit of tweaking, was putting out a solid 12 V.

What we love about the hack is that it’s one anybody can do, and it gives an inkling of what type of engineering goes into even larger projects. And be sure to watch the video to the end for the adorable and giggly results!

Speaking of larger projects, check out the reverse engineering required in this Lead Acid to Li-Ion conversion we covered in 2016.

Continue reading “Toddler EV Gets Big Boy Battery Upgrade”

Hackaday Links Column Banner

Hackaday Links: November 3, 2019

Depending on how you look at it, the Internet turned 50 years old last week. On October 29, 1969, the first message was transmitted between two of the four nodes that made up ARPANET, the Internet’s predecessor network. ARPANET was created after a million dollars earmarked for ballistic missile defense was diverted from the Advanced Research Projects Agency budget to research packet-switched networks. It’s said that ARPANET was designed to survive a nuclear war; there’s plenty of debate about whether that was a specific design goal, but if it was, it certainly didn’t look promising out of the gate, since the system crashed after only two characters of the first message were sent. So happy birthday, Internet, and congratulations: you’re now old enough to start getting junk mail from the AARP.

Good news for space nerds: NASA has persuaded Boeing to livestream an upcoming Starliner test. This won’t be a launch per se, but a test of the pad abort system intended to get astronauts out of harm’s way in the event of a launch emergency. The whole test will only last about 90 seconds and never reach more than 1.5 kilometers above the White Sands Missile Range test site, but it’s probably a wise move for Boeing to be as transparent as possible at this point in their history. The test is scheduled for 9:00 AM Eastern time — don’t forget Daylight Savings Time ends this weekend in most of the US — and will air on NASA Television.

Speaking of space, here’s yet another crowd-sourced effort you might want to consider getting in on if you’re of an astronomical bent. The Habitable Exoplanet Hunting Project is looking for a new home for humanity, and they need more eyes on the skies to do it. An introductory video explains all about it; we have to admit being surprised to learn that the sensitive measurements needed to see exoplanets transiting their stars are possible for amateur astronomers, but it seems doable with relatively modest equipment. Such are the advances in optics, CCD cameras, and image processing software, it seems. The project is looking for exoplanets within 100 light-years of Earth, perhaps on the hope that a generation ship will have somewhere to go to someday.

Space may be hard, but it’s nothing compared to running a hackerspace right here on Earth. Or at least it seems that way at times, especially when those times include your building collapsing, a police raid, and being forced to operate out of a van for months while searching for a new home, all tragedies that have befallen the Cairo Hackerspace over the last few years. They’re finally back on their feet, though, to the point where they’re ready to host Egypt’s first robotics meetup this month. If you’re in the area, stop by and perhaps consider showing off a build or even giving a talk. This group knows a thing or two about persistence, and they’ve undoubtedly got the coolest hackerspace logo in the world.

And finally, no matter how bad your job may be, it’s probably not as bad as restoring truck batteries by hand. Alert reader [rasz_pl] tipped us off to this video, which shows an open-air shop in Pakistan doing the dirty but profitable work of gutting batteries and refurbishing them. The entire process is an environmental and safety nightmare, with used electrolyte tossed into the gutter, molten lead being slung around by the bucketful, and not a pair of safety glasses or steel-toed shoes (or any-toed, for that matter) to be seen. But the hacks are pretty cool, like pouring new lead tabs onto the plates, or using a bank of batteries to heat an electrode for welding the plates together. We’ve talked about the recyclability of lead-acid batteries before and how automated plants can achieve nearly 100% reuse; there’s nothing automated here, though, and the process is so labor-intensive that only three batteries can be refurbished a day. It’s still fascinating to watch.

Continue reading “Hackaday Links: November 3, 2019”

Getting The Lead Out Of Lithium Battery Recycling

When that fateful morning comes that your car no longer roars to life with a quick twist of the key, but rather groans its displeasure at the sad state of your ride’s electrical system, your course is clear: you need a new battery. Whether you do it yourself or – perish the thought – farm out the job to someone else, the end result is the same. You get a spanking new lead-acid battery, and the old one is whisked away to be ground up and turned into a new battery in a nearly perfect closed loop system.

Contrast this to what happens to the battery in your laptop when it finally gives up the ghost. Some of us will pop the pack open, find the likely one bad cell, and either fix the pack or repurpose the good cells. But most dead lithium-based battery packs are dropped in the regular trash, or placed in blue recycling bins with the best of intentions but generally end up in the landfill anyway.

Why the difference between lead and lithium batteries? What about these two seemingly similar technologies dictates why one battery can have 98% of its material recycled, while the other is cheaper to just toss? And what are the implications down the road, when battery packs from electric vehicles start to enter the waste stream in bulk?

Continue reading “Getting The Lead Out Of Lithium Battery Recycling”

PipeCam: Shallow-Water Exploration With Raspberry Pi

In what began as a personal challenge he issued to himself, [Fred] is in the process of building an underwater camera that’s capable of long-term photography in shallow waters. He’d like it to last about five hours on a charge while taking a photo every five minutes. Ideally, it will be as cheap as possible and constructed from readily available parts. Solving the cheap/available equation would theoretically make the camera easily to replicate, which is the third major requirement.

[Fred] has recently made great strides, both in the circuitry and the capsule design. The latest version uses a Raspberry Pi 3 with a V2 camera module and runs on a 12 V, 2.4 Ah rechargeable lead-acid battery. Everything is mounted on a piece of hardboard that slides into a 110mm piece of PVC. At one end, the camera looks out through a 10mm  acrylic lens fixed into a heavy-duty PVC fitting, and a DS1307 RTC provides a handy clock for shooting time lapses. With a friend’s help, he pressure-tested the housing and found that it can withstand 4 bar without leaking. He is still doing dry tests and trying hard to resist the urge to throw it in the water.

PipeCam is a work in progress, and [Fred] has many ideas for improvements. He’d like to add an Arduino to govern the battery use and provide its vital signs back to the Pi, and add an LDR to decide whether there’s enough light to warrant turning the Pi on to take pictures.

PVC is great for custom capsule building. But if you want to get started with underwater photography a little faster and want to build something instead of just buying a GoPro, try sealing your camera in something that’s already watertight.

Blast Your Battery’s Sulphates, Is It Worth It?

When a friend finds her caravan’s deep-cycle battery manager has expired over the summer, and her holiday home on wheels is without its lighting and water pump, what can you do? Faced with a dead battery with a low terminal voltage in your workshop, check its electrolyte level, hook it up to a constant current supply set at a few hundred mA, and leave it for a few days to slowly bring it up before giving it a proper charge. It probably won’t help her much beyond the outing immediately in hand, but it’s better than nothing.

A lot of us will own a lead-acid battery in our cars without ever giving it much thought. The alternator keeps it topped up, and every few years it needs replacing. Just another consumable, like tyres or brake pads. But there’s a bit more to these cells than that, and a bit of care and reading around the subject can both extend their lives in use and help bring back some of them after they have to all intents and purposes expired.

One problem in particular is sulphation of the lead plates, the build-up of insoluble lead sulphate on them which increases the internal resistance and efficiency of the cell to the point at which it becomes unusable. The sulphate can be removed with a high voltage, but at the expense of a dangerous time with a boiling battery spewing sulphuric acid and lead salts. The solution therefore proposed is to pulse it with higher voltage spikes over and above charging at its healthy voltage, thus providing the extra kick required to shift the sulphation build up without boiling the electrolyte.

If you read around the web, there are numerous miracle cures for lead-acid batteries to be found. Some suggest adding epsom salts, others alum, and there are even people who talk about reversing the charge polarity for a while (but not in a Star Trek sense, sadly). You can even buy commercial products, little tablets that you drop in the top of each cell. The problem is, they all have the air of those YouTube videos promising miracle free energy from magnets about them, long on promise and short on credible demonstrations. Our skeptic radar pings when people bring resonances into discussions like these.

So so these pulse desulphators work? Have you built one, and did it bring back your battery from the dead? Or are they snake oil? We’ve featured one before here, but sadly the web link it points to is now only available via the Wayback Machine.