Get The Party Started With A Mesh WiFi Light Show

Wildly blinking LEDs may not be the ideal lighting for the average office environment, but they’ll surely spice up any party. And since a party without music is just a meeting, having both synced up is a great way to set the mood. Sure, you could simply roll out your standard LED strip instead, but that gets a bit boring, and also a bit tricky if you want to light up several places the same way. [Gerrit] might have built the perfect solution though, with his (mu)sic (R)eactive (Li)ghts, or muRLi, which are a set of individual lights that synchronize a programmable pattern over WiFi.

The system consists of muRLi itself as the base station that defines and sends the light pattern through WebSockets, and several muRLi Nodes that house a set of WS2812B LEDs to receive and display it. Both are built around a Wemos D1 Mini configured to set up a WiFi mesh network, and depending what’s in reach, the nodes connect either to the base station or other nodes, giving the system definitely enough reach for any location size. The music is picked up by a MAX4466-amplified microphone inside the base station — adding some more flexibility to positioning the system — and analyzed for volume and audio spectrum, which is also shown on an OLED.

The best part however is how the light patterns are programmed. Instead of hard-coding it into the firmware, [Gerrit] went for a modular approach with little ROM cartridges to plug into the muRLi base station. The cartridge itself contains just an I2C EEPROM, storing JavaScript code that is interpreted by the firmware using mJS. The scripts have access to the analyzed audio data and amount of LEDs within the network, and can dynamically generate the patterns as needed that way. Everything is neatly housed in 3D-printed enclosures, with all the design and source files available on the project’s GitHub page — but see for yourself in the video after the break.

If you don’t care about the wireless part but enjoy light synced up with music, have a look at a plain MIDI solution for that. As for [Gerrit], we’re definitely looking forward to seeing his next endeavor one day, since we also enjoyed his last one.

Continue reading “Get The Party Started With A Mesh WiFi Light Show”

LoRa Mesh Network With Off-the-Shelf Hardware

An ideal application for mesh networking is off-grid communication; when there’s no cellular reception and WiFi won’t reach, wide-area technologies like LoRa can be used to create ad hoc wireless networks. Whether you’re enjoying the outdoors with friends or conducting a rescue operation, a cheap and small gadget that will allow you to create such a network and communicate over it would be a very welcome addition to your pack.

That’s exactly the goal of the Meshtastic project, which aims to take off-the-shelf ESP32 LoRa development boards and turn them into affordable mesh network communicators. All you need to do is buy one of the supported boards, install the firmware, and starting meshing. An Android application that will allow you to use the mesh network to send basic text messages is now available as an alpha release, and eventually you’ll be able to run Signal over the LoRa link.

Navigating to another node in the network.

Developer [Kevin Hester] tells us that these are still the very early days, and there’s plenty of work yet to be done. In fact, he’s actively looking to bring a few like-minded individuals onto the project. So if you have experience with the ESP32 or mobile application development, and conducting private communications over long-range wireless networks sounds like your kind of party, this might be your lucky day.

From a user’s perspective, this project is extremely approachable. You don’t need to put any custom hardware together, outside of perhaps 3D printing a case for your particular board. The first time around you’ll need to flash the firmware with esptool.py, but after that, [Kevin] says future updates can be handled by the smartphone application.

Incidentally, the primary difference between the two boards is that the larger and more expensive one includes GPS. The mesh networking side of things will work with either board, but if everyone in your group has the GPS-equipped version, each user will be able to see the position of everyone else in the network.

This isn’t the first time we’ve seen LoRa used to establish off-grid communications, and it surely won’t be the last. The technology is perfect for getting devices talking where there isn’t any existing infrastructure, and we’re excited to see more examples of how it can be used in this capacity.

Zombies Ate Your Neighbors? Tell Everyone Through LoRa!

As popular as the post-apocalyptic Zombie genre is, there is a quite unrealistic component to most of the stories. Well, apart from the whole “the undead roaming the Earth” thing. But where are the nerds, and where is all the apocalypse-proof, solar-powered tech? Or is it exactly this lack of tech in those stories that serves as incentive to build it in the first place? Well, maybe it doesn’t have to be the end of the world to seek for ways to cope with a collapse of our modern communication infrastructure either. Just think of natural disasters — an earthquake or hurricane causing a long-term power outage for example. The folks at [sudomesh] tackle exactly this concern with their fully open source, off-grid, solar-powered, LoRa mesh network, Disaster Radio.

The network itself is built from single nodes comprising of a battery-backed solar panel, a LoRa module, and either the ESP8266 or ESP32 for WiFi connectivity. The idea is to connect to the network with your mobile phone through WiFi, therefore eliminating any need for additional components to actually use the network, and have the nodes communicate with each other via LoRa. Admittedly, LoRa may not be your best choice for high data rates, but it is a good choice for long-range communication when cellular networks aren’t an option. And while you can built it all by yourself with everything available on [sudomesh]’s GitHub page, a TTGO ESP32 LoRa module will do as well.

If the idea itself sounds familiar, we did indeed cover similar projects like HELPER and Skrypt earlier this year, showing that LoRa really seems to be a popular go-to for off-grid communication. But well, whether we really care about modern communication and helping each other out when all hell breaks loose instead of just primevally defending our own lives is of course another question.

Particle Mesh Powers The Internet Of Fans

With the winter months not far off, [Ben Brooks] was looking for a way to help circulate the heat from his wood-burning fireplace throughout his home. Rather than go with a commercial solution, he decided to come up with his own automated air circulation system powered by the mesh networking capabilities of one of his favorite pieces of tech, the Particle Photon.

Particle Xeon remote sensor

The idea here is pretty simple: use a remote temperature sensor to tell a fan located behind the fireplace when it’s time to kick on and start sharing some of that warmth with the rest of the house. But as usual, it ended up being a bit trickier than anticipated. For one, when [Ben] took a close look at the Vornado 660 fan he planned on using, he realized that its speed controller was “smart” enough that simply putting a relay on the AC line wouldn’t allow him to turn it on and off.

So he had to do some reverse engineering to figure out how the Sonix SN8P2501B microcontroller on the board was controlling the fan, and then wire the Photon directly to the pins on the chip that corresponded with the various physical controls. This allows the Photon to not only “push” the buttons to trigger the different speeds, but also read the controls to see if a human is trying to override the current setting.

For the remote side [Ben] is using a Particle Xenon, which is specifically designed for Internet of Things endpoints and sensor applications. Combined with a TMP36 temperature sensor and 3.7 V 500 mAh battery, this allowed him to easily put together a wireless remote thermometer that will publish the current temperature to the Photon’s mesh network at regular intervals.

This isn’t the first time we’ve seen the Particle Photon used to augment an unassuming piece of hardware. We’ve previously seen one get grafted into a coffee maker, and if you can believe it, somebody even stuck one inside an umbrella to create a mobile weather station.

Manhole Covers Hide Antennas

5G is gearing up to be the most extensive implementation of mesh networking ever, and that could mean antennas will not need to broadcast for miles, just far enough to reach some devices. That unsightly cell infrastructure stuck on water towers and church steeples could soon be hidden under low-profile hunks of metal we are already used to seeing; manhole covers. This makes sense because 5G’s millimeter radio waves are more or less line-of-sight, and cell users probably wouldn’t want to lose connectivity every time they walk behind a building.

At the moment, Vodafone in the UK is testing similar 4G antennas and reaching 195 megabits/sec download speeds. Each antenna covers a 200-meter radius and uses a fiber network because, courtesy of existing underground infrastructure. There is some signal loss from transmitting and receiving beneath a slab of metal, but that will be taken into account when designing the network. The inevitable shift to 5G will then be a relatively straightforward matter of lifting the old antennas out and laying the new hardware inside, requiring only a worker and a van instead of a construction crew.

We want to help you find all the hidden cell phone antennas and pick your own cell module.

Via IEEE Spectrum.

Video Review: AND!XOR DEF CON 26 Badge

The AND!XOR team have somehow managed to outdo themselves once again this year. Their newest unofficial hardware badge for DEF CON 26 just arrived. It’s a delightful creation in hardware, software, and the interactive challenges built into both.

They call this the “Wild West of IoT”, a name that draws from the aesthetic as well as the badge-to-badge communications features. Built on the ESP32-WROVER module which brings both WiFi and Bluetooth to the party, the badges are designed to form a wireless botnet at the conference. Anyone with a badge can work to advance their level and take more and more control of the botnet as they do.

Check out the video overview and then join me below for a deeper dive into all this badge has to offer.

Continue reading “Video Review: AND!XOR DEF CON 26 Badge”

Hackaday Prize Entry: Disaster Recovery WiFi

The Meshpoint project originated in Croatia during the 2015 Syrian refugee crisis, when [Valent Turkovic] and other volunteers noticed that first responders, including NGOs like Greenpeace and the Red Cross, often struggled to set up communications in the field. They came to the conclusion that they couldn’t rely on the normal communications infrastructure because it was either damaged or overloaded.

The solution is a net of open source, autonomous WiFi mesh routers, scalable from a single team to serving thousands of people. Responders who won’t have time for a difficult login process, should find setup as easy as signing in to a social media site.

The physical nodes would consist of a router robust for up to 150 connections, all run by an ESP8266 and protected by a weatherproof enclosure. They would feature 6-8 hour battery lives with recharging via solar/wind, AC from wall current or generators, or simply DC car batteries.

You can learn more about the project or download their code from GitHub.