God Of Papercraft Builds Working Organ Used For Own Adulation

There’s a wide world to explore when it comes to papercraft, but we reserve special praise for fully functional builds. [Aliaksei Zholner’s] working papercraft organ is a stunning example of what can be achieved with skill and perseverance.

The video is short but covers some finer touches – the folded concertinas of paper acting as springs to return the keys, for example. Air is supplied by a balloon, and the organ has a tone similar to other toy organs of comparable size.

The builder has declined to share templates at this stage, due to the complexity of the model and the fact that apparently even the thickness of the paper used can affect the function. This is not surprising — to get any sort of pipe organ to play in tune requires finesse and careful fine tuning. The build thread sheds some further light on the build (in Russian) if you’re curious to know more.

Perhaps the one thing we find surprising is that we haven’t seen something similar that’s 3D printed. If you’ve done it, smash it through on the tip line! Else, if you’re thirsty for more functional papercraft, you can’t go past the fantastic papercraft strandbeest build we covered back in 2011.

Miniature Engine Model Made Of Paper

You can make a lot of stuff out of paper, but a single-stroke engine model less than an inch across? That’s a new one, courtesy of Russian hacker [Aliaksei Zholner], who built a quite remarkable model of a single-stroke engine out of paper (in Russian, translated version via Google Translate). Measuring less than an inch across, it is driven by compressed air and accurately models the rotary action of a single-stroke engine, where a piston in the cylinder drives a flywheel that creates the engine cycle.

The creator has managed to run it at up to about 60 revolutions per second, or about 3600rpm. That’s an impressive speed for a few bits of paper and glue, and there is even an input restrictor that can control the airflow that drives the model.  We’ve featured some interesting paper creations before, such as this papercraft robot and a Strandbeest, but this one is a step beyond. [Aliaksei] has also made the plans and template for this available, so those with steady hands can go ahead and try to make their own.

Continue reading “Miniature Engine Model Made Of Paper”

Going Lo-Tech For The Perfect Pokemon Go Throw

We have our eyes on the horizon for an epic GPS spoof to catch some legendaries in Pokemon Go, but until that hack shows up, we really like [Brian McEvoy’s] hack for the perfect Poke Ball throw.

[Brian] started out thinking that a mechanical build would be the best way (we know he’s got the servo motors and controllers to drive them from this tea steeping robot he built last year). But the mechanics of that are just too complicated for what you get in return (less wasted Poke Balls).

He came to the realization that your finger is the best machine, it just needs some augmentation. Most of his Poke Ball throws missed to one side or another, so he turned to papercraft to guide his way. He made a tray from some paperboard packaging, then used two small stacks of Post-it notes to create a channel where your finger slides. Simply hold the phone and the paper with one hand, and use your other to follow the paper channel to a successful capture. The paperboard doesn’t affect the screen’s ability to sense your finger.

This is one we’re definitely going to try out. But visions of hardware hacks for the game that has rocked the world still dance through our heads. Are you working on anything? If so, we’d love to hear about (so send in a tip!). Those still in the idea phase can ring in below. We are weighing the feasibility of doing a man-in-the-middle between a phone and its GPS chip to spoof location. That feels like a pretty tall mountain to climb.

Continue reading “Going Lo-Tech For The Perfect Pokemon Go Throw”

Paper Topo Models With Vector Cutter

If there’s a science fair coming up, this trumps just about any 2D poster. It’s a 3D topographical map of an inactive Slovakian volcano, Poľana. [Peter Vojtek] came up an easy way to generate SVG topo patterns using Ruby.

Topographical data is available through the MapQuest API. You should be able to model just about any part of the world, but areas with the greatest elevation difference are going to yield the most interesting results. The work starts by defining a rectangular area using map coordinates and deciding the number of steps (sheets of paper representing this rectangle). The data are then chopped up into tables for each slice, converted to SVG points, and a file is spit out for the blade cutting machine. Of course you could up the game and laser cut these from more substantial stock. If you have tips for laser-cutting paper without singing the edges let us know. We’ve mostly seen failure when trying that.

The red model explained in [Peter’s] writeup uses small cross-pieces to hold the slices. We like the look of the Blue model which incorporates those crosses in the elevation representation. He doesn’t explain that specifically but it should be easy to figure out — rotate the rectangle and perform the slicing a second time, right?

If you’re looking for more fun with topography we’ve always been fond of [Caroline’s] bathymetric book.

Combination Lock Made Out Of Paper

Most projects we feature are of the metal/wire/wood variety, but there is an entire community devoting to making very interesting and intricate things out of paper. Imgur user [Criand] has been hard at work on his own project made entirely out of paper, a combination lock that can hold a secret message (reddit post).

The motivation for the project was as a present for a significant other, wherein a message is hidden within a cryptex-like device and secured with a combination that is of significance to both of them. This is similar to how a combination bike lock works as well, where a series of tumblers lines up to allow a notched shaft to pass through. The only difference here is that the tiny parts that make up the lock are made out of paper instead of steel.

This project could also be used to gain a greater understanding of lock design and locksport, if you’ve ever been curious as to how this particular type of lock works, although this particular one could easily be defeated by a pair of scissors (but it could easily cover rock). If papercraft is more of your style though, we’ve also seen entire gyroscopes and strandbeests made of paper!

An Elegant Timepiece From Paper And A Fistful Of Servos

papercraftClock

Segments rise from a sheer white surface to reveal the time in this papercraft digital / analog clock build by [Jacky Mok].

New York-based designer [Alvin Aronson] is responsible for the original, titled “D/A Clock,” which he built as a student at RISD using Corian instead of paper. [Aronson]’s design is also massive in comparison. It measures one meter wide by a half meter tall. Without access to either a 3D printer or to a laser cutter, [Jacky] instead reduces the scale of his interpretation and relies on cardstock as the primary construction material. His experience with papercraft typography leads to a design that anyone with an Exacto knife and a slice of patience should find manageable. [Jacky] ignores the Exacto option, however, and cuts his pieces with a tool we saw earlier this year: the Silhouette Portrait.

The clock’s electronics include an Arduino Uno, a servo motor controller, twenty-eight servos and an RTC breakout board that handles timekeeping. Each servo drives its own segment by sliding a paperclip forward or backward inside a small, hollow aluminum rod. Though we’re still holding out for a video of the finished papercraft build, you can watch a video of Aronson’s original clock after the break and see what inspired [Jacky’s] design.

Need another clock to envy? Last month’s build by [ebrithil] uses twenty-two servos to individually spin the segments. If you prefer that your clocks light up, [Aaron’s] o-scope transformation has you covered.

Continue reading “An Elegant Timepiece From Paper And A Fistful Of Servos”

Popup Book Includes A Playable Piano Keyboard

pop-up-book-has-playable-piano

This popup book contains several interactive electronic elements. It’s the creation of [Antonella Nonnis] using mostly scrap materials she had on hand. Of course there are some familiar players behind the scenes that take care of the electronic elements.

Her photo album of the build process sheds light on how she pulled everything together. Instead of adding switches for interactivity she built capacitive touch sensors on the backs of the pages. Strips of copper foil serve as flexibly traces, moving the connections past the binding and allowing them to be jumpered to the pair of Arduino boards which control the show. That’s right, there’s two of them. One is dedicated to running the pop-up piano keyboard seen above. The other deals with Art, Math, and Science elements on other pages.

This continues some of the multimedia work we saw popping up in popups a few years back.

Continue reading “Popup Book Includes A Playable Piano Keyboard”