Print in place pump being used next to ladder

Print In Place Pump Pushes Limits Of Printing

3D printing has taken off into the hands of almost anyone with a knack for wanting something quick and easy. No more messing around with machining or complex assembly. However, with the general hands-off nature of most 3D prints, what could be possible with a little more intervention during the printing process? [Ben] from Designed to Make represents this perfectly with an entire centrifugal pump printed all at once.

This project may not entirely fit into the most strict sense of “print in place”; however, the entire pump is printed as one print file. The catch is the steps taken during printing, where a bearing is placed and a couple of filament changes are made to allow dissolvable supports to be printed. Once these supports are dissolved away, the body is coated with epoxy to prevent any leakage.

Testing done by [Ben] showed more than impressive numbers from the experimental device. Compared to previous designs made to test impeller features, the all in one pump could stand its own against in most categories.

One of the greatest parts of the open source 3D printing world is the absolute freedom and ingenuity that comes out of it, and this project is no exception. For more innovations, check out this DIY full color 3D printing!

Continue reading “Print In Place Pump Pushes Limits Of Printing”

Print in place board holder

Print-and-Clamp: Rubber Band PCB Stand Slides Into Duty

When it comes to soldering on a PCB it almost always helps to have some way to hold the board off your workbench, allowing leads to pass though with out making it unstable and keeping it level while working with tiny components. This project sent in by [Mel] was born out of necessity he was going to be teaching a soldering class and needed a way to keep boards in place, and so designed this Print-in-place PCB holder.

While there are certainly a long list of products designed to serve this function [Mel] took advantage of some idle 3D printers to turn out PCB stands that require no assembly, just the addition of a rubber band and they are ready for use. Part of the challenge of print in place 3D prints is dialing in the tolerances of your design and printer, and for this [Mel] printed some smaller slider mechanisms that were quick to print and iterate with until he was happy and could start turning out the larger design using those values.

The full PCB holder includes 3 independent sliders allowing for boards of all shapes and sizes to be held. To tension the board mounts there is a slow lower down on the uprights to allow for a rubber band to be added pulling all three towards the center. Finally [Mel] included small trays between the 3 sliders to give you a convenient place to components are you assemble your board. The 3D print falls are all available for download and [Mel] also included the small slider as a 3D print for you to check your printer tollerances before you run off the final design. Thanks [Mel] for sending in your soldering tool design, it’s a great addition to some of our other soldering assistant devices we’ve featured.

[Ben] at workbench with 3D-printed sea scooter

Watertight And Wireless In One Go: The DIY Sea Scooter

To every gadget, tool, or toy, you can reasonably think: ‘Sure I could buy this… but can I make it myself?’ And that’s where [Ben] decided he could, and got to work. On a sea scooter, to be exact.

This sea scooter was to be a fully waterproof, hermetically sealed 3D-printed underwater personal propulsion device, with the extreme constraint that the entire hull and mechanical interfaces are printed in one go. No post-printing holes for shafts, connectors, or seals. It also meant [Ben] needed to embed all electronics, motor, magnetic gearbox, custom battery pack, wireless charging, and non-contact magnetic control system inside the print during the actual print process.

As [Ben] explains, both Bluetooth and WiFi ranges are laughable once underwater. He elegantly solves this with a reed-switch-based magnetic control system. The non-contact magnetic drive avoids shaft penetrations entirely. Power comes from a custom 8S LiFePO₄ pack, charged wirelessly through the hull. Lastly, everything’s wrapped in epoxy to make it as watertight as a real submarine.

The whole trick of ‘print-in-place’ is that [Ben] pauses the builder mid-print, and drops in each subsystem like a secret ingredient. Continuing, he tweaks the printer’s Z-offset, and onwards it goes. It’s tense, high-stakes work; a 14-hour print where one nozzle crash means binning hundreds of dollars’ worth of embedded components.

Still, [Ben] took the chance, and delivered a cool, fully packed and fully working sea scooter. Comment below to discuss the possibilities of building one yourself.

Continue reading “Watertight And Wireless In One Go: The DIY Sea Scooter”

Mini Car Racing Game Really Shows Off Multicolor Printing

Quality 3D printing is a common hobbyist tool nowadays, and [wontonnn]’s mini arcade car racing game really shows off how 3D printing can bring parts from functional to fantastic. There are quite a few details we like in [wontonn]’s design, so let’s take a closer look.

The mini mechanical game is one of those treadmill-based car racing games in which the player navigates a little car between an onslaught of belt-borne obstacles. A little DC motor spins things up in a modular side assembly, and a hand-cranked option is available. The player’s car attaches via a magnet to a steering arm; if the player’s car gets knocked off the magnet, game over.

Treadmill belt segments print as large pre-assembled pieces, with ends that snap together without connectors. Belts like this are sometimes tricky, so this is worth keeping in mind should one ever need a similar part. Since there are no external fasteners or hardware to depend on, one could resize it easily to suit their own project purposes.

The finishing touches on the whole assembly look great. It used to be that the sort of colors and lettering seen here would come from a sticker or label, but [wontonn] gets clean lines and colors by raising (or sinking) different parts of the design. The checkerboard pattern, for example, has the light squares raised for printing in a different color.

Electromechanical arcade games have an appeal all their own, being a fusion of both mechanical and electric design that comes together in a special way. Want to make your own? Get inspired by the classic Lunar Lander reimagined, or check out this LEGO treadmill racer that takes an entirely different approach to the concept.

Continue reading “Mini Car Racing Game Really Shows Off Multicolor Printing”

This BB Shooter Has A Spring, But Not For What You Think

[It’s on my MIND] designed a clever BB blaster featuring a four-bar linkage that prints in a single piece and requires no additional hardware. The interesting part is how it turns a trigger pull into launching a 6 mm plastic BB. There is a spring, but it only acts as a trigger return and plays no part in launching the projectile. So how does it work?

There’s a spring in this BB launcher, but it’s not used like you might expect.

The usual way something like this functions is with the trigger pulling back a striker of some kind, and putting it under tension in the process (usually with the help of a spring) then releasing it. As the striker flies forward, it smacks into a BB and launches it. We’ve seen print-in-place shooters that work this way, but that is not what is happening here.

With [It’s on my MIND]’s BB launcher, the trigger is a four-bar linkage that transforms a rearward pull of the trigger into a forward push of the striker against a BB that is gravity fed from a hopper. The tension comes from the BB’s forward motion being arrested by a physical detent as the striker pushes from behind. Once that tension passes a threshold, the BB pops past the detent and goes flying. Thanks to the mechanical advantage of the four-bar linkage, the trigger finger doesn’t need to do much work. The spring? It’s just there to reset the trigger by pushing it forward again after firing.

It’s a clever design that doesn’t require any additional hardware, and even prints in a single piece. Watch it in action in the video, embedded just below.

Continue reading “This BB Shooter Has A Spring, But Not For What You Think”

Flexures Make Robotic Fingers Simpler To Print

Designing an anthropomorphic robotic hand seems to make a lot of sense — right up until the point that you realize just how complex the human hand is. What works well in bone and sinew often doesn’t translate well to servos and sensors, and even building a single mechanical finger can require dozens of parts.

Or, if you’re as clever about things as [Adrian Perez] is, only one part. His print-in-place robotic finger, adorably dubbed “Fingie,” is a huge step toward simplifying anthropomorphic manipulators. Fingie is printed in PLA and uses flexures for the three main joints of the finger, each of which consists of two separate and opposed coil springs. The flexures allow the phalanges to bend relative to each other in response to the motion of three separate tendons that extend through a channel on the palmar aspect of the finger, very much like the real thing.

The flexures eliminate the need for bearings at each joint and greatly decrease the complexity of the finger, but the model isn’t perfect. As [Adrian] points out, the off-center attachment for the tendons makes the finger tend to curl when the joints are in flexion, which isn’t how real fingers work. That should be a pretty easy fix, though. And while we appreciate the “one and done” nature of this print, we’d almost like to see the strap-like print-in-place tendons replaced with pieces of PLA filament added as a post-processing step, to make the finger more compact and perhaps easier to control.

Despite the shortcomings, and keeping in mind that this is clearly a proof of concept, we really like where [Adrian] is going with this, and we’re looking forward to seeing a hand with five Fingies, or four Fingies and a Thumbie. It stands to be vastly simpler than something like [Will Cogley]’s biomimetic hand, which while an absolute masterpiece of design, is pretty daunting for most of us to reproduce.

Continue reading “Flexures Make Robotic Fingers Simpler To Print”

Screwless Eyeballs Are A Lesson In Design-For-Assembly

[Will Cogley] makes eyeballs; hey, everyone needs a hobby, and we don’t judge. Like all his animatronics, his eyeballs are wondrous mechanisms, but they do tend toward being a bit complex, especially in terms of the fasteners needed to assemble them.

But not anymore. [Will] redid his eyeball design to be as easy to assemble as possible, and the results are both impressive and instructive. His original design mimics real eyeballs quite well, but takes six servos and a large handful of screws and nuts, which serve both to attach the servos to the frame and act as pivots for the many, many linkages needed. The new design has snap-fit pivots similar to Lego Technic axles printed right into the linkage elements, as well as snap connectors to hold the servos down. This eliminates the need for 45 screws and cuts assembly time from 30 minutes to about six, with no tools required. And although [Will] doesn’t mention it, it must save a bunch of weight, too.

Everything comes at a cost, of course, and such huge gains in assembly ease are no exception. [Will] details this in the video below, including printing the parts in the right orientation to handle the forces exerted both during assembly and in use. And while it’s hard to beat a five-fold reduction in assembly time, he might be able to reduce that even more with a few print-in-place pivots.

Continue reading “Screwless Eyeballs Are A Lesson In Design-For-Assembly”