Hackaday Prize Entry: Oscilloscope For The Masses

If you head down to your local electronics supply shop (the Internet), you can pick up a quality true-RMS multimeter for about $100 that will do almost everything you will ever need. It won’t be able to view waveforms, though; this is the realm of the oscilloscope. Unlike the multimeter’s realistic price point, however, a decent oscilloscope is easily many hundreds, and often thousands, of dollars. While this is prohibitively expensive for most, the next entry into the Hackaday Prize seeks to bring an inexpensive oscilloscope to the masses.

The multiScope is built by [Vítor] and is based on the STM32-O-Scope which is built around a STM32F103C8T6 microcontroller. This particular chip was chosen because of its high clock speed and impressive analog-to-digital resolution, which are two critical specifications for any oscilloscope. This particular scope has an inductance meter built-in as well, which is another feature which your otherwise-capable multimeter probably doesn’t have.

New features continue to get added to this scope by [Vítor]. Most recently he’s added features which support negative voltages and offsets. His particular scope is built inside of a model car, too, but we believe this to be an optional feature.

Digital Clock Goes With The Grain

This good-looking clock appears to be made out of a block of wood with LED digits floating underneath. In reality, it is a block of PLA plastic covered with wood veneer (well, [androkavo] calls it veneer, but we think it might just be a contact paper or vinyl with a wood pattern). It makes for a striking effect, and we can think of other projects that might make use of the technique, especially since the wood surface looks much more finished than the usual 3D-printed part.

You can see a video of the clock in operation below. The clock circuit itself is nothing exceptional. Just a MAX7218 LED driver and a display along with an STM32 ARM processor. The clock has a DHT22 temperature and humidity sensor, as well as a speaker for an alarm.

Continue reading “Digital Clock Goes With The Grain”

Doomed Thermostat

It is amazing how the game Doom has been ported to so many things. Enter one more port, where the hardware in question is a Honeywell Prestige thermostat.

In his video, [cz7asm] shows us the game running quite nicely on the 480 x 272 LCD with an NES controller plugged into the USB port originally intended for software updates. The thermostat runs on a STM32F429 which is an ARM9 processor that has the juice to pull it off. The Doom engine being used is based on Chocolate Doom, an open source port of the game, and the binaries can be downloaded for Windows and Mac. The source code is also available as a download for your tinkering pleasure. This project by [cz7asm]  is extended from a code on GitHub by [floppes] that was meant for the STM32F429IDISCOVERY evaluation board.

The author shares his code for the STM32F4 on Dropbox as a zip and in order to compile it, the Atmel BSP for GNU GCC is used. The video below demonstrates the hack in action and, though there is no sound yet, the satisfaction that comes from such modifications is its own reward.

What else can you run Doom on? How about a calculator or maybe the Intel Edison or even an ATM machine! If there is a processor with enough muscle power, hackers will find a way to run Doom on it. So have you seen any alien computers lately that you think can be hacked? Continue reading “Doomed Thermostat”

Open Source Firmware For Hoverboards

2015 was two years ago, and to the surprise of many, we actually had hoverboards at the time. Of course, these weren’t Back to the Future-style hovering skateboards; they were crappy two-wheeled balancing scooters that suffered a few battery explosions and were eventually banned from domestic flights by some carriers. But oh boy, there were some funny Vines of these things.

While the rest of the world moved on from hoverboards, [Casainho] has been working on Open Sourcing the firmware for these interesting bits of electronics and motors. Now, his work is wrapping up and he has new firmware for electric unicycles and hoverboards.

The popular and cheap electric unicycles and hoverboards that have been swimming across the Pacific from the great land of Ali Baba for the past five years are based around a single, cheap controller board. This controller board is built around the STM32F1038T6 microcontroller, and are able to control a pair of three-phase brushless motors. The teardown began on the electric unicycle forum and was completely documented in a GitHub repo.

The Open Source firmware is now mostly complete, although the necessary self-balancing function doesn’t work. We’re thinking that’s alright; with this new firmware, these electric unicycles have a crazy amount of torque and could be the basis for a few very cool builds. You can check out a video of this torque below.

If two wheels seems far too safe, exercise your inner daredevil with a 3D printed unicycle conversion for a hoverboard.

Continue reading “Open Source Firmware For Hoverboards”

Rusty ARM

You’ve probably heard that Rust is a systems programming language that has quite the following growing. It purports to be fast like C, but has features like guaranteed memory and thread safety, generics, and it prevents segmentation faults. Sounds like just the thing for an embedded system, right? [Jorge Aparicio] was frustrated because his CPU of choice, an STM32 ARM Cortex-M didn’t have native support for Rust.

Apparently, you can easily bind C functions into a Rust program but that wasn’t what he was after. So he set out to build pure Rust programs that could access the device’s hardware and he documented the effort.

Continue reading “Rusty ARM”

STM32 Analog Converter Phase Noise

[Avian] has been using STM32 ARM processors to sample RF for a variety of applications. At first, he was receiving relatively wide TV signals. Recently, though, he’s started dealing with very narrow signals and he found that his samples had a lot of spread in the frequency domain that he didn’t expect.

What followed was some detective work that resulted in a determination that phase noise was the culprit. But why? [Avian] took some measurements and noticed that the phase noise almost exactly matched the phase noise specification for the STM32’s phase locked loop (PLL).

Unfortunately, there didn’t seem to be a good way to avoid using the PLL without major changes to the rest of the circuit. However, it was quite the learning experience and something to be aware of when counting on built-in converters for high-accuracy measurements.

One of the best things about this post is the references to more information. There’s a great explanation of phase noise, as well as a specific application note about clock jitter and analog converters.

We’ve talked about phase noise in direct digital synthesis a few times. But usually, it is pretty obvious like when you are asking a CPU to double as an RF transmitter. [Avian’s] post was a bit more of a detective story.

PlatformIO And Visual Studio Take Over The World

In a recent post, I talked about using the “Blue Pill” STM32 module with the Arduino IDE. I’m not a big fan of the Arduino IDE, but I will admit it is simple to use which makes it good for simple things.

I’m not a big fan of integrated development environments (IDE), in general. I’ve used plenty of them, especially when they are tightly tied to the tool I’m trying to use at the time. But when I’m not doing anything special, I tend to just write my code in emacs. Thinking about it, I suppose I really don’t mind an IDE if it has tools that actually help me. But if it is just a text editor and launches a few commands, I can do that from emacs or another editor of my choice. The chances that your favorite IDE is going to have as much editing capability and customization as emacs are close to zero. Even if you don’t like emacs, why learn another editor if there isn’t a clear benefit in doing so?

There are ways, of course, to use other tools with the Arduino and other frameworks and I decided to start looking at them. After all, how hard can it be to build Arduino code? If you want to jump straight to the punch line, you can check out the video, below.

Continue reading “PlatformIO And Visual Studio Take Over The World”