Retrotechtacular: The Power To Stop

In everyday life, the largest moving object most people are likely to encounter is probably a train. Watching a train rolling along a track, it’s hard not to be impressed with the vast amount of power needed to put what might be a mile-long string of hopper cars carrying megatons of freight into motion.

But it’s the other side of that coin — the engineering needed to keep that train under control and eventually get it to stop — that’s the subject of this gem from British Transport Films on “The Power to Stop.” On the face of it, stopping a train isn’t exactly high-technology; the technique of pressing cast-iron brake shoes against the wheels was largely unchanged in the 100 years prior to the making of this 1979 film. The interesting thing here is the discovery that the metallurgy of the iron used for brakes has a huge impact on braking efficiency and safety. And given that British Railways was going through about 3.5 million brake shoes a year at the time, anything that could make them last even a little longer could result in significant savings.

It was the safety of railway brakes, though, that led to research into how they can be improved. Noting that cast iron is brittle, prone to rapid wear, and liable to create showers of dangerous sparks, the research arm of British Railways undertook a study of the phosphorus content of the cast iron, to find the best mix for the job. They turned to an impressively energetic brake dynamometer for their tests, where it turned out that increasing the amount of the trace element greatly reduced wear and sparking while reducing braking times.

Although we’re all for safety, we have to admit that some of the rooster-tails of sparks thrown off by the low-phosphorus shoes were pretty spectacular. Still, it’s interesting to see just how much thought and effort went into optimizing something so seemingly simple. Think about that the next time you watch a train go by.

Continue reading “Retrotechtacular: The Power To Stop”

Joel in his minecart

This Little Minecraft Mine Cart Of Mine

[Joel] of Joel Creates loves trains and Minecraft. So what better way to combine them than to make a real-life electric mine cart and ride it around?

At first glance, it seems pretty straightforward. Four wheels, each with a flange, mounted to a box with a motor. In practice, it was a little more complex than that. Just finding a spot of track to even ride on is tricky. Most “abandoned” tracks that you might see around your city often aren’t all that abandoned. Luckily for [Joel], he remembered an amusement park in the area that he went to as a kid, which he remembered having a decent amount of track. Additionally, the rails were smaller and closer to the scale of a real Minecraft track where one block is 1 meter. After calling up the owner and receiving permission, Joel began to build his cart.

First attempts to procure actual train wheels were foiled by cost and lead times, and simply CNCing a set of wheels was too expensive from a time and materials point of view. [Joel]’s first thought was about making an assembly out of two wheels to grip the rail, much like a roller coaster. However, there were dozens of switch points on the track at the park and several road crossings, both things that wouldn’t work with that sort of setup. Stumbling upon a bit of hacker inspiration, [Joel] turned to brake drums, which happen to be reasonably close to the correct size. They also have the superb quality of being relatively cheap and available. Almost all the parts were CNCed out of aluminum, plywood, or foam.

Given that the theme of the build was doing things to scale, [Joel] was mindful of the top speed of a minecart in the game, which is 8 meters per second or roughly 25 miles per hour, so he set that as his goal to hit. A beefy motor from an online warehouse and a lithium-ion pack allowed him to hit that easily; it was just a matter of doing so safely.

If you need even more Minecraft vehicles in your life, perhaps an RC boat might do the trick? Video after the break.

Continue reading “This Little Minecraft Mine Cart Of Mine”

China MagLev Train Aspirations Boosted By New 600 Km/h Design

Maglev trains have long been touted as the new dawn for train technology. Despite keen and eager interest in the mid-20th century, development has been slow, and only limited commercial operations have ever seen service. One of the most well-known examples is the Shanghai Maglev Train which connects the airport to the greater city area. The system was purchased as a turnkey installation from Germany, operates over a distance of just 30.5 km, and according to Civil Engineering magazine cost $1.2 billion to build in 2001. Ever since, it’s served as a shining example of maglev technology — and a reminder of difficult and expensive maglev can be.

However, China has fallen in love with high-speed rail transport in the last few decades and has invested heavily. With an aggressive regime of pursuing technology transfers from foreign firms while building out the world’s largest high-speed rail network, the country has made great progress. Now, Chinese rail transit manufacturer, CRRC Corporation, have demonstrated their newest maglev train, which hopes to be the fastest in the world.

Continue reading “China MagLev Train Aspirations Boosted By New 600 Km/h Design”

Coffee Table Railroad Flips To Hide The Fun

The livingroom coffee table has long been a favorite realm of the model railroad. But what to do when you actually want to have coffee? [Peter Waldraff] has come up with a most eloquent answer to the problem by designing a coffee table model railroad capable of turning the world upside down.

This isn’t [Peter’s] first rodeo. In his demo video below he shows off a coffee table train he built 20 years ago using a rectangular layout under glass. This time the circular design means a spherical volume can rotate around two skateboard bearing pivot points, revealing the mountainous scene on one side and the boring old wood table on the other. But what happens to the N-scale train itself when gravity is reversed? There’s a brilliant solution to that!

The frame of the coffee table includes an outer loop for train storage. Before flipping the model upside-down, the train itself is sent to this siding for safe keeping. In an earlier build video we can glimpse the latching mechanism that uses a solenoid and is actuated by a magnet in the center of the table. A clever use of toggle bolts (sometimes known as butterfly anchors for securing things on drywall) has them transfer power to the outer ring of storage track when their spring-loaded arms come in contact with some screw heads on the other side of the gap. The source of the electricity is a rechargeable Makita power tool battery in a hidden chamber within the mountain.

Of course we’ve seen other hideaway coffee table trains like this lovely hand-carved version. But you have to admire how [Peter] managed to incorporate everything into a self contained unit here, without the needing to store a removable cover. If you are someone who wants to always show off your handy work, that’s where a perspex box coffee table design comes into play.

Continue reading “Coffee Table Railroad Flips To Hide The Fun”

Hyperloop: Fast, But At What Cost?

When it comes to travelling long distances, Americans tend to rely on planes, while the Chinese and Europeans love their high speed rail. However, a new technology promises greater speed with lower fares, with fancy pods travelling in large tubes held at near-vacuum pressures. It goes by the name of Hyperloop.

Virgin Hyperloop recently ran the first-ever passenger test of a Hyperloop vehicle, reaching 100 mph on a short test track.

Spawned from an “alpha paper” put together by Elon Musk in 2013, the technology is similar to other vactrain systems proposed in the past. Claiming potential top speeds of up to 760 mph, Hyperloop has been touted as a new high-speed solution for inter city travel, beating planes and high speed rail for travel time. Various groups have sprung up around the world to propose potential routes and develop the technology. Virgin Hyperloop are one of the companies at the forefront, being the first to run a pod on their test track with live human passengers, reaching speeds of 100 mph over a short 500 meter run.

It’s an exciting technology with a futuristic bent, but to hit the big time, it needs to beat out all comers on price and practicality. Let’s take a look at how it breaks down.

Continue reading “Hyperloop: Fast, But At What Cost?”

North American Field Guide To Rail Cars

Trains are one of the oldest and most reliable ways we have of transporting things and people over long distances. But how often do you think about trains? Where I live, they can clearly be heard every hour or so. I should be used to the sound of them by now, but I like it enough to stop what I’m doing and listen to the whistles almost every time. In the early morning quiet, I can even hear the dull roar as it rumbles down the track.

I recently got a front row seat at a railroad crossing, and as the train chugged through the intersection, I found myself wondering for the hundredth time what all the cars had in them. And then, as I have for the last twenty or thirty years, I wondered why I never see a caboose anymore. I figured it was high time to answer both questions.

 

Image via GBX

Boxcar

Boxcars are probably the most easily identifiable after the engine and the caboose.

Boxcars carry crated and palletized freight like paper, lumber, packaged goods, and even boxes. Refrigerated box cars carry everything from produce to frozen foods.

Boxcars (and barns for that matter) are traditionally a rusty red color because there were few paint options in the late 1800s, and iron-rich dirt-based paint was dirt cheap.

 

Flat car with bulkheads. Image via YouTube

Flat Car

Standard, no-frills flat cars are the oldest types of rail cars. These are just big, flat platform cars that can carry anything from pipe, rail, and steel beams to tractors and military vehicles.

Flat cars come in different lengths and are also made with and without bulkheads that help keep the cargo in place. Some flat cars have a depression in the middle for really tall or heavy loads, like electrical transformers.

 

Image via Ship Cars Now

Auto Rack

As the name implies, auto racks carry passenger cars, trucks, and SUV from factories to distributors. They come in two- and three-level models, although there have been specialized auto racks over the years.

Perhaps the strangest auto rack of them all was the Vert-a-Pac. When Chevrolet came up with the Vega in the gas-conscious 1970s, they wanted to be able to move them as cheaply as possible, so they shipped the cars on end. If you’re wondering about all the fluids in the car when they were upended, a special baffle kept oil from leaking out, the batteries were capped, and the windshield washer fluid bottle was positioned at an angle.

Continue reading “North American Field Guide To Rail Cars”

Staged Train Wrecks: An Idea That Ran Out Of Steam

Before there were demolition derbies, there were train totalings. That’s right, somebody had the idea to take a couple of worn-out train engines that were ready for the scrap heap, point them at each other, and drive them full steam ahead. And their boss said capital idea, let’s do it. This was the late 1890s.

Maybe it wasn’t the safest way to spend an evening, but a staged train wreck was surely an awesome spectacle to behold. Imagine being one of the brave engineers who had no choice but to get the train going as fast as possible and then jump out at the last second. A demolition derby seems like child’s play by comparison.

The largest and most widely-publicized wreck was put on by a man named William George Crush who was trying to find new ways to promote the Missouri-Kansas-Texas passenger railway. Once he got the okay, Crush found a large field surrounded by three hills that made for excellent viewing. He stood up a temporary town complete with a circus tent restaurant, a wooden jail cell, and 200 rent-a-constables.

On September 15th, 1896, forty thousand people gathered to watch two trains collide along a section of purpose-built track. They hit each other going 50 mph (80 km/h) and both engines exploded, sending hot iron projectiles every which way. Several people were injured, a few died, and a hired photographer lost an eye to shrapnel. Train totalings nevertheless continued until the Great Depression of the 1930s, when the practice was discarded as wasteful.

Thanks for the tip, [Martin]!