Down the Rabbit Hole of STM32 Clock Options

Once you venture beyond the tame, comfortable walls of the 8-bit microcontroller world it can feel like you’re stuck in the jungle with a lot of unknown and oft scary hazards jut waiting to pounce. But the truth is that your horizons have expanded exponentially with the acceptable trade-off of increased complexity. That’s a pretty nice problem to have; the limitation becomes how much can you learn.

Here’s a great chance to expand your knowledge of the STM32 by learning more about the system clock options available. We’ve been working with STM32 chips for a few years now and still managed to find some interesting tidbits — like the fact that the High Speed External clock source accepts not just square waves but sine and triangle waves as well, and an interesting ‘gotcha’ about avoiding accidental overclocking. [Shawon M. Shahryiar] even covers one of our favorite subjects: watchdog timers (of which there are two different varieties on this chip). Even if this is not your go-to 32-bit chip family, most chips have similar clock source features so this reading will help give you a foothold when reading other datasheets.

There is a clock diagram at the top of that post which is small enough to be unreadable. You can get a better look at the diagram on page 12 of this datasheet. Oh, and just to save you the hassle of commenting on it, the chip shown above is not an f103… but it just happened to be sitting on our desk when we started writing.

100% DIY Intervalometer is 100% Awesome

It’s easy to tell from this process documentary that [Nagyizee] is not one to settle for prefabricated anything. He could have just bought some off-the-shelf DSLR intervalometer, but that would mean interfacing with someone else’s design through cold, soulless plastic.

[Nagyizee] wanted a one-of-a-kind tool built from the ground up. In addition to a timer, he was in the market for a light sensor and sound detection. He chose an STM32F100 ARM Cortex M3 running at 8MHz in the name of power efficiency and started designing the UI and firmware. A custom graphic library for the OLED display streamlines it even further. Once the schematic was finalized, [Nagyizee] devised a stylish and ergonomic wooden case to be milled with a tiny Proxxon F70.

With the enclosure decisions out of the way, he etched and drilled the PCB and placed the components. The light sensor needed a lens and a prism, so he made one from a 10mm LED body. Not one to miss a detail, [Nagyizee] also turned some buttons, hand painted them, and made a scroll wheel. He ends the video with a demonstration that proves it is quite capable. In addition to standard cable release mode, it handles long exposure times, sequential shooting, and capture on light, shadow, or sound. But wait, there’s more: [Nagyizee]’s creation combines modes with ease and grace.

Continue reading “100% DIY Intervalometer is 100% Awesome”

Arietta G25 Has Us Wondering Where ARM Boards are Going

ARIETTA-G25-256

This tidy little ARM board is the Arietta G25. It’s based around an AT91SAM9G25 which is an ARM9 chip running at 400MHz. Paired with the DDR2 RAM (in 128 or 256 meg options) to the left, the board runs Linux and runs it well. After the break you can see the obligatory running of Doom. But in this case it doesn’t just run a demo, but is playable from momentary push buttons on a breadboard (props to the Arietta team for using wire wrap for that setup).

See the vertical row of pads between the processor and the SD card slot? That’s a breakout header designed to accept a WiFi module. In at €20-30 based on your RAM choice and just €7 for the WiFi module this board is certainly a contender for any embedded Linux projects. But it does have us wondering, should be thinking of these as ARM boards, or forget the low-level development and just think of them as a Linux machines with plenty of GPIO available?

The 20×2 pin header breaks out a lot of the SAM9’s features. We really like the interactive pinout posted for this device. For instance, there are three sets of USB host lines available. But you’ll want to click on each to see that one set is in use for the SD card, and another is used by the WiFi module. The documentation that has been posted for the Arietta G25 is one of its strongest point. Nice work there!

Continue reading “Arietta G25 Has Us Wondering Where ARM Boards are Going”

A Complete C64 System, Emulated on an STM32

The Commodore 64 is the worlds bestselling computer, and we’re pretty sure most programmers and engineers above a certain age owe at least some of their career to this brown/beige keyboard that’s also a computer. These engineers are all grown up now, and it’s about time for a few remakes. [Jeri Ellisworth] owes her success to her version, there are innumerable pieces of the C64 circuit floating around for various microcontrollers, and now [Mathias] has emulated everything (except the SID, that’s still black magic) in a single ARM microcontroller.

On the project page, [Mathais] goes over the capabilities of his board. It uses the STM32F4, overclocked to 235 MHz. There’s a display controller for a 7″ 800×480 TFT, and 4GB of memory for a library of C64 games. Without the display, the entire project is just a bit bigger than a business card. With the display, it’s effectively a C64 tablet, keyboard not included.

This is a direct emulation of the C64, down to individual opcodes in the 6510 CPU of the original. Everything in the original system is emulated, from the VIC, CIAs and VIAs, serial ports, and even the CPU of the 1541 disk drive. The only thing not emulated is the SID chip. That cherished chip sits on a ZIF socket for the amazement of onlookers.

You can check out some images of the build here, or the video demo below.

Continue reading “A Complete C64 System, Emulated on an STM32″

Introducing the F*Watch, a Fully Open Electronic Watch

As one of their colleagues was retiring, several CERN engineers got together after hours during 4 months to develop his gift: a fully open electronic watch. It is called the F*Watch and is packed with sensors: GPS, barometer, compass, accelerometer and light sensor. The microcontroller used is a 32-bit ARM Cortex-M3 SiLabs Giant Gecko which contains 128KB of RAM and 1MB of Flash. In the above picture you’ll notice a 1.28″ 128×128 pixels Sharp Memory LCD but the main board also contains a micro-USB connector for battery charging and connectivity, a micro-SD card slot, a buzzer and a vibration motor.

The watch is powered by a 500mA LiPo battery. All the tools that were used to build it are open source (FreeCAD, KiCad, GCC, openOCD, GDB) and our readers may make one by downloading all the source files located in their repository. After the break is embedded a video showing their adventure.

Continue reading “Introducing the F*Watch, a Fully Open Electronic Watch”

The Teensy Audio Library

There are a few ways of playing .WAV files with a microcontroller, but other than that, doing any sort of serious audio processing has required a significantly beefier processor. This isn’t the case anymore: [Paul Stoffregen] has just released his Teensy Audio Library, a library for the ARM Cortex M4 found in the Teensy 3 that does WAV playback and recording, synthesis, analysis, effects, filtering, mixing, and internal signal routing in CD quality audio.

This is an impressive bit of code, made possible only because of the ARM Cortex M4 DSP instructions found in the Teensy 3.1. It won’t run on an 8-bit micro, or even the Cortex M3-based Arduino Due. This is a project meant for the Teensy, although [Paul] has open sourced everything and put it up on Github. There’s also a neat little audio adapter board for the Teensy 3 with a microSD card holder, a 1/8″ jack, and a connector for a microphone.

In addition to audio recording and playback, there’s also a great FFT object that will split your audio spectrum into 512 bins, updated at 86Hz. If you want a sound reactive LED project, there ‘ya go. There’s also a fair bit of synthesis functions for sine, saw, triangle, square, pulse, and arbitrary waveforms, a few effects functions for chorus, flanging, envelope filters, and a GUI audio system design tool that will output code directly to the Arduino IDE for uploading to the Teensy.

It’s really an incredible amount of work, and with the number of features that went into this, we can easily see the quality of homebrew musical instruments increasing drastically over the next few months. This thing has DIY Akai MPC/Monome, psuedo-analog synth, or portable effects box written all over it.

Stepping Through Code on a Pace 4000 Set Top Box

[Lee] wrote in to tell us about a Set Top Box he hacked. Before the cable industry lawyers get out their flaming swords… he’s not stealing cable, or really doing much of anything. This is a hack just for the adventure and thrill of making someone else’s hardware design do your bidding without any kind of instructions.

He posted about the adventure in two parts. The first is finding the JTAG header and identifying the pins. Arduino to the rescue! No really, and this is the type of Arduino use we love. Using a package called JTAGenum the board becomes a quick tool for probing and identifying JTAG connections.

The image above shows a different piece of hardware. From looking at it we’re pretty sure this is a Bus Blaster which is specifically designed for JTAG debugging with ARM processors. This is the beginning of the second part of his documentation which involves code dumping and stepping through lines code (or instructions) using OpenOCD and GDB. It’s a chore to follow all that [Lee] discovered just to write his name to the display of the box. But we certainly found it interesting. The display has a convoluted addressing scheme. We assume that there are cascading shift registers driving the segments and that’s why it behaves the way it does. Take a look for yourself and let us know what you think in the comments.