Hipster Linux Box is an 8mm Film Editor

Browsing though the junk store one day [Alec] spotted an old school 8mm film editor. For those who weren’t around, video used to be shot on film and editing it was a mechanical task of cutting (with a sharp implement) and pasting (with special tape) back together. It’s sad to see these in junk stores, but great for [Alec] who thought it begged to have an LCD and a single board computer implanted in it.  Once the editor was in hand, the machine was gutted of its very simple parts: a lamp, some mirrors and a couple of lenses. He took measurements of the hollowed out enclosure and got down to business.

The hunt for a 4:3 aspect ratio LCD was on. Through a little bit of research, an LCD security screen was ordered from Alibaba. For the brains of the build an OLinuXino A13 board was chosen due to its native VGA output perfect for the LCD screen, a decent 1GHz Allwinner CPU, and the physical size which would fit in the editor housing.

With some haggling, Linux was installed on the SBC along with some games and the system was buttoned back up. A neat touch was added to the arms where you would originally place your film reals in the form of some fold out speakers, making the whole thing look like something direct out of a classic Sci-fi film. Check out the name of the project: PCsr, pronounced PC Senior… nice!

We’d love to see some film reels added as speaker grills. Maybe there will be some leftover reels to use after converting all your old film to digital.

Join us after the break for a quick video

Continue reading “Hipster Linux Box is an 8mm Film Editor”

64bits Of Development Board

Whether we need them or not, we don’t usually shy away from a development board. [Keith] sent us a tip on the DragonBoard 410c after reading our recent coverage of the latest Beagleboard release. Arrow Electronics is manufacturing (and distributing, not surprisingly) the first Qualcomm Snapdragon 400 series based development board. At the time of writing there are two boot images on the 96boards.org site available for download Android 5.1 and an Ubuntu based version of Linux.

The DragonBoard 410c is stuffed with an Arm Cortex-A53 (Arm block diagram after the break) with max speed of 1.2GHz and support for 32bit and 64bit code. It also has on-board GPS, 2.4GHz WiFi, Bluetooth 4.1, full size HDMI connector, a micro USB port that operates in only device mode, two full size USB 2.0 ports for host mode, a micro SD card slot. In the way of GPIO it has a 40 pin low speed connector and a 60 pin high speed connector, there is also an additional 16 pin breakout for analog audio, and the list goes on (follow links above for more info).

For those of you playing buzzword drinking games not to worry, the board can be made Arduino compatible by using the mezzanine connector and there is a plan for the board to be Windows 10 compatible. Better make that a double!

Continue reading “64bits Of Development Board”

FRDM-K22F ARM Board doesn’t have an SD Card Socket? Not so Fast!

The Freescale Freedom development boards come in several different flavors and at several different price points. It is pretty clear that Freescale counts up pennies to hit their desired target price. For example, the costlier boards with bigger processors (like the K64F which costs about $35) has sockets to fit an Arduino shield or other external connections. Many of the cheaper boards (like the KL25Z for $13) just has PCB holes. If you want to add sockets, that’s on you.

The $30 K22F board has the sockets, but it also omits a few components that are on the PCB. [Erich Styger] noted that there was a micro SD card socket footprint on the board and wondered if he could add an SD card to the board by just soldering on the socket. The answer: yes!

Continue reading “FRDM-K22F ARM Board doesn’t have an SD Card Socket? Not so Fast!”

ARMing a Breadboard — Everyone Should Program an ARM

I’m always a little surprised that we don’t see more ARM-based projects. Of course, we do see some, but the volume isn’t what I’d expect given that low-level ARM chips are cheap, capable, low power, and readily available. Having a 32-bit processor with lots of memory running at 40 or 50 MIPS is a game changer compared to, say, a traditional Arduino (and, yes, the Arduino Due and Zero are ARM-based, so you can still stay with Arduino, if that’s what you want).

A few things might inhibit an Arduino, AVR, or PIC user from making the leap. For one thing, most ARM chips use 3.3V I/O instead of the traditional 5V levels (there are exceptions, like the Kinetis E). There was a time when the toolchain was difficult to set up, although this is largely not a problem anymore. But perhaps the largest hurdle is that most of the chips are surface mount devices.

Of course, builders today are getting pretty used to surface mount devices and you can also get evaluation boards pretty cheaply, too. But in some situations–for example, in classrooms–it is very attractive to have a chip that is directly mountable on a common breadboard. Even if you don’t mind using a development board, you may want to use the IC directly in a final version of a project and some people still prefer working with through hole components.

The 28 Pin Solution

One solution that addresses most, if not all, of these concerns is the LPC1114FN28 processor. Unlike most other ARM processors, this one comes in a 28 pin DIP package and works great on a breadboard. It does require 3.3V, but it is 5V tolerant on digital inputs (and, of course, a 3.3V output is usually fine for driving a 5V input). The chip will work with mbed or other ARM tools and after prototyping, you can always move to a surface mount device for production, if you like. Even if you are buying just one, you should be able to find the device for under $6.

Continue reading “ARMing a Breadboard — Everyone Should Program an ARM”

ARMs and FPGAs Make for Interesting Dev Boards

Tiny Linux computers are everywhere, and between BeagleBones, Raspberry and Banana Pis, and a hundred other boards out there, there are enough choices to go around. There is an extremely interesting ARM chip from Xilinx that hasn’t seen much uptake in the field of tiny credit-card sized computers: the Zynq. It’s an ARM Cortex-A9 coupled with an FPGA. It’s great for building peripherals that wouldn’t normally be included on a microcontroller. With Zynq, you just instantiate the custom bits in the FPGA, then interface them with a custom Linux driver. Thanks to CrowdSupply, there’s now a board out there that brings this intriguing chip to a proper development platform. It’s called the Snickerdoodle, and if you’ve ever wanted to see the capabilities of an FPGA tightly coupled to a fast processor, this is the board to watch.

The core of the Snickerdoodle is a Xilinx Zynq that features either a 667 MHz ARM Cortex A9 and a 430k gate FPGA (in the low-end configuration) or an 866 A9 and 1.3M gate FPGA. This gives the Snickerdoodle up to 179 I/O ports – far more than any other tiny Linux board out there.

Fully loaded, the Snickerdoodle comes with 2.4 and 5GHz WiFi, Bluetooth, 1GB of RAM, and an ARM Cortex A9 that should far surpass the BeagleBone and Raspberry Pi 2 in capabilities. This comes at a price, though: the top-shelf Snickerdoodle has a base price of about $150.

Still, the power of a fast ARM and a big FPGA is a big draw and we’re expecting a few more of these Zynq boards in the future. There are even a few projects using the Zynq on hackaday.io, including one that puts the Zynq in a Raspberry Pi-compatible footprint. That’s exceedingly cool, and we can’t wait to see what people will build with a small, fast ARM board coupled to an FPGA.

Data Logger Powered by Linkit One Board

[Jed Hodson] put together a nice little data logger with a Linkit One board at its heart. It’s capable of logging two analog channels and one digital channel which also has PWM capabilities. A GPS is used to get the correct time and a Freetronics OLED display coupled with a shield lets the user view the data in real time.

The data is logged on the Linkit One’s internal storage as a .CSV file, allowing for easy access via a spread sheet program. A LiPo rechargeable battery keeps the electrons flowing and the system will give a warning once the power drops below 20%. Speaking of system – the Linkit One board features an ARM-7 processor and has headers to fit Arduino shields. It’s targeted for wearable and IoT type devices.

Be sure to check out this project if you’re in need of a nice data logger. All code and details of the build are available on [Jed’s] Blog.

A Third Scale Mini PowerMac

We’re surrounded by tiny ARM boards running Linux, and one of the most popular things to do with these tiny yet powerful computers is case modding. We’ve seen Raspberry Pis in Game Boys, old Ataris, and even in books. [Aaron] decided it was time to fit a tiny computer inside an officially licensed bit of miniature Apple hardware and came up with the Mini PowerMac. It’s a 1/3rd scale model of an all-in-one Mac from 1996, and [Aaron] made its new hardware fit like a glove.

Instead of an old Mac modified with an LCD, or even a tiny 3D printed model like Adafruit’s Mini Mac Pi, [Aaron] is using an accessory for American Girl dolls released in 1996. This third-scale model of an all-in-one PowerPC Mac is surprisingly advanced for something that would go in a doll house. When used by American Girl dolls, it has a 3.25″ monochrome LCD that simulates the MacOS responding to mouse clicks and keypresses. If you want to see the stock tiny Mac in action, here’s a video.

The American Girl Mini Macintosh is hollow, and there’s a lot of space in this lump of plastic. [Aaron] tried to fit a Raspberry Pi in the case. A Pi wouldn’t fit. An ODROID-W did, and with a little bit of soldering, [Aaron] had a computer far more powerful than an actual PowerMac 5200. Added to this is a 3.5″ automotive rearview display, carefully mounted to the 1/3rd size screen bezel of the mini Mac.

The rest of the build is exactly what you would expect – a DC/DC step down converter, a USB hub, and a pair of dongles for WiFi and a wireless keyboard. The software for the ODROID-W is fully compatible with the Raspberry Pi, and a quick install of the Basilisk II Macintosh emulator and an installation of Mac OS 7.5.3 completed the build.