Geared system adds RFID to regular door locks

[Flowolf] added an auto-locking RFID entry system to his front door. He used our favorite fabrication system, acrylic and threaded rod (we also like to throw in aluminum angle bracket from time to time). The support structure mounts underneath the escutcheon plate for the lockset, keeping the main acrylic sheet flat against the door.

An RFID reader and Arduino run the system, with a button inside to unlock the door. But if power were to fail, you will still be able to get in or out manually. When you are using the electronic system, a stepper motor connected to the geared lock knob by a chain is what grants access, then revokes it again five seconds later. The wire going up out of the this image is for a switch that lets the unit sense when the door is closed.

As shown in the video after the break, you can turn the auto-lock feature off. But we’d like to see an emergency entry feature, like a knock-based lock, because eventually you will leave without your keys!

[Read more...]

Star Trek style pneumatic doors that don’t require a stagehand

In 1966, [Gene Roddenberry] introduced fully manual doors powered by a stagehand on Star Trek. The fwoosh sound of the door was later dubbed into each show, but progress marches on, and now [Alex] created his own Star Trek-style automatic doors for his house.

The build includes a ‘control panel’, and [Alex]‘s door operates in three modes: Open, and stay open; Close, and stay closed; and Automatic. The control panel itself is fairly remarkable. A small puck interacts with a magnetometer underneath [Alex]‘s counter. If the puck is pointed towards ‘Open’, the door stays open. If the door is pointed towards ‘Closed’, the door stays closed. If the puck isn’t near the magnetometer, the door operates in automatic mode with the help of a few IR sensors to detect someone trying to get in or out of [Alex]‘s kitchen.

For the mechanical portion of the build, [Alex] used a One meter long piston with the quietest air compressor he could find. We can’t tell from the video after the break if the compressor ever kicks in, but [Alex] says it’s about the same volume as his fridge. As a small added bonus, the new automatic door does have a fwoosh sound, just like [Gene] would have wanted.

[Read more...]

Giving Siri the keys to your house

We haven’t really covered many hacks having to do with Apple’s newest iPhone feature Siri. We’d bet you’ve already heard a bunch about the voice-activated AI assistant and here’s your chance to give it the keys to your house. This project uses Siri to actuate the deadbolt on an entry door in a roundabout sort of way.

This is really just a Siri frontend for an SMS entry system seen in several other hacks. The inside of the door (pictured above) has a servo motor mounted next to, and attached via connecting rod with, the lever-style deadbolt. An Arduino equipped with a WiFly shield controls that servo and is waiting for instructions from the Google app engine. But wait, they’re not done yet. The app engine connects to a Twilio account which gives it the ability to receive SMS messages. Long story short; Siri is sending a text message that opens the door… eventually. You can seen in the demo after the break that the whole process takes over twenty seconds from the time you first access Siri to the point the bolt is unlocked. Still, it’s a fine first prototype.

There’s a fair amount of expensive hardware on that door which we’d like to see converted to extra feaures. [CC Laan] has already added one other entry method, using a piezo element to listen for a secret knock. But we think there’s room for improvement. Since it’s Internet connected we’d love to see a sensor to monitor how often the door is opened, and perhaps a PIR sensor that would act as a motion-sensing burglar alert system.

Don’t need something this complicated? How about implementing just the secret knock portion of the hack?

[Read more...]

Simple circuit reminds you to lock the door as you rush out of the house

door_lock_minder

It seems that [pppd] is always rushing out of his apartment to catch the bus, and he finds himself frequently questioning whether or not he remembered to lock the door. He often doubles back to check, and while he has never actually forgotten to lock the door, he would rather not deal with the worry.

Since he finally had some free time on his hands, he decided to put together a simple device that would help end his worry once and for all. Using an ATtiny13, [pppd] designed a circuit that would detect when his door has been unlocked and opened, beeping every few seconds until the lock is reengaged. The circuit relies on a reed switch installed inside the door frame, which is tripped by the magnet he glued to his door’s deadbolt.

He says that the system works well so far, though he does have a few improvements in mind already.

Motorized coop door lets the chickens out for you

[Larry] and [Carol] just upgraded the coop to make their lives easier, and to help keep the chickens happy. The image above is a chicken’s-eye-view of the newly installed automatic door. It’s a guillotine design that uses the weight of the aluminum plate door to make sure predators can’t get in at night. This is much easier to fabricate than a locking coop door would have been. Some leftover aluminum channel guides the door on either side, with a spool above it to wind up some rope, thereby lifting the door.

You can see the belt-drive motor is also mounted inside, out of the element. To the right of the image you can just make out a plastic food container. This protects the electronics from the elements. Inside you’ll find an H-bridge to drive the motor, a real-time-clock to make sure the schedule is well-timed, and an Arduino. There are a couple of reed switches which let the microcontroller sense the position of the door.

After the break you can see a demonstration video, as well as a slide show with build details. The motor is pretty quiet and, although it spooks the chicken in the demo just a bit, we’d be they’ll be used to it in no time.

[Read more...]

DIY servo activated door lock with capacitive touch keypad

diy_servo_activated_door_lock_capacitive_touch

Since he was a kid [Giorgos Lazaridis] has always loved the idea of having an electronic door locking mechanism, and now that he has the means, he’s decided to construct one for securing the door to his apartment. He calls the project “simple and cheap”, though we’re not sure about the first part. Taking a look at his very detailed build log, you can see that he has invested quite a bit of time and effort into this impressive project.

Buying an off the shelf product was expensive and not a whole lot of fun, so [Giorgos] disassembled his door’s locking mechanism to see how he might be able to actuate the lock electronically himself. With minimal modifications to the lock, he was able to add a servo which reliably opens the it when triggered.

With the mechanical portion of the project out of the way, he spent a great deal of time working on the door’s electronic components, including the PIC-based controller and capacitive keypad. The keypad proved to be a bit of a problem, but after a few revisions he found a design that was both reliable and pleasing to the eye.

The locking mechanism works pretty well, as you can see in the video below, and [Giorgos] is quite pleased with the results.

[Read more...]

Star Trek inspired pocket doors

Do you have enough confidence in your hacking abilities to build a project into the walls of your home? [Marc] used his skills to build an air-powered sliding door for his bedroom. It is similar to the sliding door you’d find on the Enterprise, two sections that slide nicely into the wall to let you pass. Although the picture above shows the internals, he followed through and ended up with a fully finished room that looks fantastic. A compressor in the attic provides the pressure necessary to move the door sections. It is automated, but uses a button press or keypad combination to run instead of detecting motion. Of course, since he’s using a PIC microcontroller to drive the system there’s always room for future changes. Check out how great the finished look is in the video after the break.

[Read more...]

Follow

Get every new post delivered to your Inbox.

Join 92,441 other followers