[Sprite_TM] OHM2013 Talk: Hacking hard drive controller chips

Even if he hadn’t done any firmware hacking on this hard drive [Sprite_TM’s] digital exploration of the controller is fascinating. He gave a talk at this year’s Observe, Hack, Make (OHM2013) — a non-commercial community run event in the Netherlands and we can’t wait for the video. But all the information on how he hacked into the three-core controller chip is included in his write up.

[Sprite_TM] mentions that you’re not going to find datasheets for the controllers on these drives. He got his foot in the door after finding a JTAG pinout mentioned on a forum post. The image above shows his JTAG hardware which he’s controlling with OpenOCD. This led him to discover that there are three cores inside the controller, each used for a different purpose. The difference between [Sprite_TM’s] work and that of mere mortals is that he has a knack for drawing surprisingly accurate conclusions from meager clues. To see what we mean check out the memory map for the second core which he posted on page 3 or his article.

Using JTAG he was able to inject a jump into the code (along with a filler word to keep the checksum valid) and run his own code. To begin the firmware hacking portion of the project he pulled the flash ROM off of the board and installed it on that little board sticking out on the left. This made it easy for him to backup and reflash the chip. Eventually this let him pull off the same proof of concept as a firmware-only hack (no JTAG necessary). He goes onto detail how an attacker who has root access could flash hacked firmware which compromises data without any indication to they system admin or user. But we also like his suggestion that you should try this out on your broken hard drives to see if you can reuse the controllers for embedded projects. That idea is a ton a fun!

When we were poking around the OHM2013 website (linked above) we noticed that the tickets are sold out; good for them! But if you were still able to buy them they take Bitcoin as one payment option. Are there any other conferences that allow Bitcoin for registration?

Building a hard drive scratch controller

hard-disk-scratch-controller

If you’re reading this blog then chances are you have a dead hard drive hanging out somewhere in your house. Here’s a weekend project that will put it back into use. [Andreas] took on the popular project which combines a hard drive and optical mouse to build a scratch controller.

The gist of the build is that you use an optical mouse sensor to track the movement of the platter. But [Andreas] made things harder on himself by not using the USB capability of the mouse and mapping it in software for his needs. Instead he plucked the sensor from the mouse, reading it using an Arduino. After much trial and error with the best way to coat the underside of the platter to play nicely with the sensor he managed to get it up and running. The controller issues commands using the MIDI protocol, forming a strong foundation for future upgrades which could lead to a full-blown DJ console hack.

Continue reading “Building a hard drive scratch controller”

Anachronistic Hard Drive for the Apple II

applefile

Not wanting too many disks lying around his Apple II battlestation, [NeXT] started looking into hard drive solutions. There is the old-time solution – a ProFile hard drive initially designed for the Apple /// and Lisa, but those are rare as hen’s teeth, and just as expensive as newer Compact Flash adapters. [NeXT] had another option – SCSI, with an adapter card, but most of the SCSI devices of the era didn’t fit in with the cool ‘stackable’ aesthetic of AII peripherals.

With a bit of Bondo and some paint, [NeXT] modded an old dual disk drive into a retro-looking hard drive perfect for storing and running hundreds of old games.

[NeXT] began his build by taking an old Apple DuoDisk (the two-disk drive seen above) and Bondoing over the holes in the front. A drive activity light was added above the Apple logo, and the old drives saved for another day. Inside the new enclosure, an old 40MB hard drive, tested on a Macintosh SE/30, was installed along with a small power supply for the drive. With a few custom SCSI cables, the drive will be ready for it’s grand debut. We think it looks awesome just sitting there, and is sure to be the pride of [NeXT]’s collection.

HDD POV clock takes the best from those that came before it

hdd-pov-clock

The concept behind this clock has been seen before, but [Dieter] tried to combine the best aspects of several projects into his HDD POV clock (translated). The basic principle of the design is to cut a slot into the top platter of the hard drive. This will let the light from some LEDs shine through. By carefully synchronizing the LED with the spinning platter a set of differently colored hands can be shown to mark time. We’ve been looking at the project for several minutes now and we’re not quite sure if the lines marking the 5-minute segments on the clock are generated in the same way as the hands, or if they’re marks on a faceplate on top of the platters. Check out the clip after the break and let us know what you think.

Past HDD clock project include this one, or this other one. Some of the design improvements include a better motor driver (which [Dieter] pulled from an old VCR) and the inclusion of an RTC chip to keep accurate time without the need to be connected to a computer. We also think it’s a nice touch to sandwich the hardware between two picture frames for a nice finished look.

Continue reading “HDD POV clock takes the best from those that came before it”

Hacked together NAS in a box

hacked-together-nas-in-a-box

[David] is serving up files on his home network thanks to this Frankenstein’s monster of a Network Attached Storage device. It looks like he raided all the good bits from his parts bin to bring it all together.

The case is a tin box which may have been for a card/board game or some holiday treats. The hardware started with an NS-K330 server which he picked up from Deal Extreme. It has a NIC and a couple of USB ports but it tends to run really hot so he added a heat sinks to the board’s main chips. The hard drives are both 2.5″ form factor from old laptops. He uses some 2.5″ to 3.5″ mounting adapters to attach them to the tin box. A pair of USB to IDE adapters shed their cases and were solder directly to the wires which make a connection with the server’s USB ports.

There is a Linux distro specifically for this hardware but [David] wasn’t impressed with it. He ended up compiling OpenWRT for it and is satisfied with the functionality that provides.

Table golf

table-golf

This could be the dawning of a new hackerspace sport. [Antoni Kaniowski] and [Rohit Sharma] came up with a delightful game of desktop golf. But the control scheme has a decidedly geeky flair. They’re using salvaged parts from an audio device and a hard drive to control the swing of the mechanical golfer just out of focus in the background of this image.

The game was built for a class project at the Copenhagen Institute of Interaction Design. Originally they wanted to have haptic feedback which would help you learn to tailor each shot for a perfect game. This proved to be impossible with the hardware they had on hand, but as you can see from the clip after the break the system still turned out just great. The audio slide which is taped to the underside of the table adjust the swing velocity. The hunk of hardware from an old hard drive acts the trigger for the swing.

The ‘hole’ is a laser cut ring of plywood. We’d love to see complicated courses designed in CAD and meticulously assembled for competition… but maybe we’re just getting carried away.

Continue reading “Table golf”

$250,000 hard drive teardown

worlds-most-expensive-hard-drive-teardown

Have you ever seen hard drive platters this big before? Of course you haven’t, the cost of this unit is way beyond your pay grade. But now that it’s decades old we get a chance to post around inside this beast. [Dave Jones] — who we haven’t seen around these parts in far too long — takes a look inside this $250,000 storage device.

In this episode of the EEVblog [Dave] is tearing down a late 1980’s IBM hard drive. This an IBM 3390. It stores either 1.78GB or 3.78GB. These days we’d never use a mechanical drive for that little storage as flash memory is so much cheaper. But this was cutting edge for servers of the day. And that’s why you’d pay a quarter of a million dollars for the thing.

[Dave] does what he’s known for in the video after the break. He energetically pours over every aspect of the hardware discussing function and design choices as he goes.

Continue reading “$250,000 hard drive teardown”