This V8 Makes A Shocking Amount Of Power

As a work of art, solenoid engines are an impressive display of electromagnetics in action. There is limited practical use for them though, so usually they are relegated to that realm and remain display pieces. This one from [Emiel] certainly looks like a work of art, too. It has eight solenoids, mimicking the look and internal workings of a traditional V8.

There’s a lot that has to go on to coordinate this many cylinders. Like an internal combustion engine, it takes precise timing in order to make sure that the “pistons” trigger in the correct order without interfering with each other through the shared driveshaft. For that, [Emiel] built two different circuit boards, one to control the firing of each solenoid and another to give positional feedback for the shaft. That’s all put inside a CNC-machined engine block, complete with custom-built connecting rods and shafts.

If you think this looks familiar, it’s because [Emiel] has become somewhat of an expert in the solenoid engine realm. He started off with a how-to for a single piston engine, then stepped it up with a V4 design after that. That leaves us wondering how many pistons the next design will have. Perhaps a solenoid version of the Volkswagen W12?

Continue reading “This V8 Makes A Shocking Amount Of Power”

Solenoid Engine Adds Three “Pistons”

The earliest piston engines typically had only one cylinder, and at best, produced horsepower measured in single digits. But once you have a working engine, it’s a relatively short step to adding cylinders and increasing the power output. [Emiel] made a similar upgrade to one of his engines recently, upgrading it from one cylinder to four. But this isn’t an internal combustion engine, it gets its power from electric solenoids.

We featured his single-cylinder build about a month ago, and since then he’s been busy with this impressive upgrade. The new engine features four cylinders arranged in a V4 pattern. Of course, this greatly increases the mechanical complexity. To start, he had to machine a crankshaft to connect all four “pistons” to a shared output shaft. He also had to build a set of cams in order to time the firing of the cylinders properly, so they don’t work against one another.

The build is just as polished and impressive as the last, which is saying a lot. [Emiel] has a quality machine shop and built the entire motor from scratch, including winding the solenoids, machining the connecting rods and shafts, and building a very picturesque wooden base for the entire contraption to sit on. It’s definitely worth checking out.

Continue reading “Solenoid Engine Adds Three “Pistons””

What Can You Learn From An Eggbot?

An eggbot is probably the easiest introduction to CNC machines that you could possibly hope for, at least in terms of the physical build. But at the same time, an eggbot can let you get your hands dirty with all of the concepts, firmware, and the toolchain that you’d need to take your CNC game to the next level, whatever that’s going to be. So if you’ve been wanting to make any kind of machine where stepper motors move, cut, trace, display, or simply whirl around, you can get a gentle introduction on the cheap with an eggbot.

Did we mention Easter? It’s apparently this weekend. Seasonal projects are the worst for the procrastinator. If you wait until the 31st to start working on your mega-awesome New Year’s Dropping Laser Ball-o-tron 3000, it’s not going to get done by midnight. Or so I’ve heard. And we’re certainly not helping by posting this tutorial so late in the season. Sorry about that. On the other hand, if you start now, you’ll have the world’s most fine-tuned eggbot for 2020. Procrastinate tomorrow!

I had two main goals with this project: getting it done quickly and getting it done easily. That was my best shot at getting it done at all. Secondary goals included making awesome designs, learning some new software toolchains, and doing the whole thing on the cheap. I succeeded on all counts, and that’s why I’m here encouraging you to build one for yourself.

Continue reading “What Can You Learn From An Eggbot?”

Lathe’s Tool Holder Holds A Rotary Tool

What is better than a tool? Two. What is better than two? Two tools tooling together. [tintek33] wanted a rotary tool to become an attachment on his mini lathe, the video is also below the break. Fortunately, Dremels and Proxxons are built to receive accessories, or in this case, become one. Even if the exact measurements do not apply to your specific hardware, we get to see the meat of the procedure from concept to use.

We start with where the rotary tool should be and get an idea of what type of bracket will be necessary. The design phase examines the important dimensions with a sketch and then a CAD mock-up. Suitably thick material is selected, and the steps for pulling the tool from the raw stock are shown with enough detail to replicate everything yet there is no wasted time in this video. That is important if you are making a quick decision as to whether or not this is worth your hard work. Once the brace is fully functional and tested, it is anodized for the “summer ocean” blue color to make it easy to spot in the tool heap. Some complex cuts are made and shown close-up.

Thank you [jafinch78] for your comment on Take a Mini Lathe for a Spin and check out [tintek33] using his mini lathe to make a hydraulic cylinder for an RC snow plow.

Continue reading “Lathe’s Tool Holder Holds A Rotary Tool”

Replace Legacy CNC PCs With A Gerbil

There are lots of laser cutters and other CNC machines available for a decent price online, but the major hurdle to getting these machines running won’t be the price or the parts. It’s usually the controller PC, which might be running Windows XP or NT if you’re lucky, but some of them are still using IBM XT computers from the ’80s. Even if the hardware in these machines is working, it might be impossible to get the software, and even then it will be dated and lacking features of modern computers. Enter the Super Gerbil.

[Paul] was able to find a laser cutter with one of these obsolete controllers, but figured there was a better way to getting it running again. As the name suggests, it uses GRBL, a G-Code parser and CNC controller software package that was originally made to run on an 8-bit AVR microcontroller, but [Paul] designed the Super Gerbil to run on a 32 bit ARM platform. He also added Z-axis control to it, so it now sports more degrees of freedom than the original software.

By way of a proof of concept, once he was finished building the Super Gerbil he ordered a CNC machine from China with an obsolete controller and was able to get it running within a day. As an added bonus, he made everything open so there are no license fees or cloud storage requirements if you want to use his controller. [Paul] also has a Kickstarter page for this project as well. Hopefully controllers haven’t been the only thing stopping you from getting a CNC machine for your lab, though, but if they have you now have a great solution for a 3040 or 3020 CNC machine’s controller, or any other CNC machine you might want to have. Continue reading “Replace Legacy CNC PCs With A Gerbil”

Shoelace-Tying Robot With Only Two Motors

Many things that humans do are very difficult for machines. Case in point: tying shoelaces. Think of the intricate dance of fingers crossing over fingers that it takes to pass off a lace from one hand to the other. So when a team of five students from UC Davis got together and built a machine that got the job done with two hooks, some very clever gears, and two motors, we have to say that we’re impressed. Watch it in action on Youtube (also embedded below).

The two-motor constraint would seem at first to be a show-stopper, but now that we’ve watched the video about a hundred times, we’re pretty convinced that a sufficiently clever mechanical engineer could do virtually anything with two motors and enough gears. You see, the secret is that one motor is dedicated to moving a drive gear back and forth to multiple destinations, and the other motor provides the power.

This being Hackaday, I’m sure that some of you are saying “I could do that with one motor!” Consider that a challenge.

Meanwhile, if you need to see more gear-porn, check out this hummingbird automaton. Or for the miracles of cam-driven machines, check out [Fran Blanche]’s work with the Maillardet Automaton.

Continue reading “Shoelace-Tying Robot With Only Two Motors”

Talking To Alexa With Sign Language

As William Gibson once noted, the future is already here, it just isn’t equally distributed. That’s especially true for those of us with disabilities. [Abishek Singh] wanted to do something about that, so he created a way for the hearing-impaired to use Amazon’s Alexa voice service. He did this using a TensorFlow deep learning network to convert American Sign Language (ASL) to speech and a speech-to-text converter to interpret the response. This all runs on a laptop, so it should work with any voice interface with a bit of tweaking. In particular, [Abishek] seems to have created a custom bit of ASL to trigger Alexa. Perhaps the next step would be to use a robotic arm to create the output directly in ASL and cut out the Echo device completely? [Abishek] has not released the code for this project yet, but he has released the code for other projects, such as Peeqo, the robot that responds with GIFs.

[Via FlowingData and [Belg4mit]]

Continue reading “Talking To Alexa With Sign Language”