Boeing 777 from Manilla Folders, A 6+ Year Effort

The closer you look the more you will be in awe of this shockingly intricate 777 replica. The fully-articulating landing gear alone has over 2,000 parts and 200 hours of assembly, not even including the penny-sized tires with individually-cut lug nuts. All carved from manilla office folders by hand.

HAD - 777 WingA high school art architecture class in 2008 inspired this build by teaching a few papercrafting techniques. When [Luca] got a hold of a precision Air India 777-300ER schematic, he started building this 5 foot long 1:60 scale model. His project has received a fair amount of media attention over the years, including some false reports that he was so focused on the build that he dropped out of college (he did, for 2 years, but for other reasons). 6.5 years in the making, [Luca] is rounding the homestretch.

HAD - 777 GearThe design is manually drawn in Illustrator from the schematics, then is printed directly onto the manilla folders. Wielding an X-acto knife like a watch-maker, [Luca] cuts all the segments out and places them with whispers of glue. Pistons. Axles. Clamps. Tie rods. Brackets. Even pneumatic hoses – fractions of a toothpick thin – are run to their proper locations. A mesh behind the engine was latticed manually from of hundreds of strands. If that was not enough, it all moves and works exactly as it does on the real thing.

Continue reading “Boeing 777 from Manilla Folders, A 6+ Year Effort”

The model engineer



As a child, [Mike Chrisp] saw a film featuring one of the great narrow gauge English locomotives. While the story was inordinately heartening, as soon as he walked out of the theatre, [Mike] said to himself that he had to have one of these locomotives. Thus began a lifelong adventure in model engineering.

[Mike] builds model locomotives and other steam-powered means of motive power. Everything from five-inch gauge locomotives to small steam tractors is liable to come out of his small workshop, all built with the machining and engineering excellence only a lifetime of experience can provide.

As for what drives [Mike] to stay in his workshop for long hours, he says his shop is just a place to be, a place to tinker, and a place to simply think about things, even if his hands aren’t getting dirty.  There’s something beautiful about that, even if [Mike] were to hide the products of his skill away from the world.

How does that ship get into the bottle?

Meet [Ray Gascoigne]. He’s a ship builder. Well, he builds ships in bottles. He’s been doing it for years and years and years and you can see it in his hands. The details are fantastic on the ships, but I really love hearing about the tools. He talks about how much things have changed over the years from having to build your own specialized tiny drill bits from broken needles to being able to just walk right down to the store and buy some.

The part that I found most interesting is this video, as amazingly beautiful as it is, never shows the insertion and erection of a full ship.

Hackaday links: September 7, 2012

MakerSlide, European edition

We’re all familiar with the MakerSlide, right? The linear bearing system that has been turned into everything from motorized camera mounts to 3D printers is apparently very hard to source in Europe. A few folks from the ShapeOko forum have teamed up to produce the MakerSlide in the UK. They’re running a crowdsourced project on Ulule, and the prices for the rewards seem very reasonable; €65/£73 for enough extrusion, v-wheels, and spacers to make an awesome CNC router.

Kerf bending and math

A few days ago, I made an offhand remark asking for an engineering analysis of kerf bending. [Patrick Fenner] of the Liverpool hackerspace DoES already had a blog post covering this, and goes over the theory, equations, and practical examples of bending acrylic with a laser cutter. Thanks for finding this [Adrian].

276 hours well spent

[Dave Langkamp] got his hands on a Makerbot Replicator, one thing led to another, and now he has a 1/6 scale model electric car made nearly entirely out of 3D printed parts. No, the batteries don’t hold a charge, and the motor doesn’t have any metal in it, but we’ve got to admire the dedication that went in to this project.

It was thiiiiiiis big

If you’ve ever tried to demonstrate the size of an object with a photograph, you’ve probably placed a coin of other standard object in the frame. Here’s something a little more useful created by [Phil]. His International Object Sizing Tool is the size of a credit card, has inch and cm markings, as well as pictures of a US quarter, a British pound coin, and a one Euro coin. If you want to print one-off for yourself, here’s the PDF.

Want some documentation on your TV tuner SDR?

The full documentation for the E4000/RTL2832U chipset found in those USB TV tuner dongles is up on reddit. Even though these chips are now out of production (if you haven’t bought a proper tuner dongle yet, you might want to…), maybe a someone looking to replicate this really cool device will find it useful.

Drag and drop images for 3D printing

This piece of software called OmNomNom works with OpenSCAD to turn 2D images into 3D models. It’s literally a drag-and-drop process that renders almost instantly.

Here the example is a QR code, which is perfect for the software since it’s a well-defined black and white outline in the source image. But the video after the break shows several other examples that don’t rely on this simplicity. For instance, the Superman logo, which uses four different colors, is converted quite easily. There’s also a depth map of [Beethoven’s] bust that is converted into a 3D object. The same technique can be used to create terrain from topographic source images.

Once the file has been converted to a model it can still be tweaked like normal. This allows you to customize size and depth to suit your needs. This is where OpenSCD comes into play, but if you don’t use that program you can still export an STL file directly from OmNomNom for use on your 3D printer.

Continue reading “Drag and drop images for 3D printing”

Scanning turntable digitizes objects as 3D models

This turntable can automatically digitize objects for use in 3D rendering software like Blender3D. [James Dalby] built it using a high-quality DSLR, and some bits and pieces out of his junk box. The turntable itself is a Lazy Susan turned on its head. The base for the spinning model is normally what sits on the table, but this way it gives him an area to rest the model, and the larger portion acts as a mounting surface for the drive mechanism.

He used the stepper motor from a scanner, as well as the belt and tension hardware from a printer to motorize the platform. This is driven by a transistor array (a ULN2003 chip) connected to an Arduino. The microcontroller also controls the shutter of the camera. We’ve included his code after the break; you’ll find his demo video embedded there as well.

The concept is the same as other turntable builds we’ve seen, But [James] takes the post-processing one step further. Rather than just make a rotating gif he is using Autodesk 123D to create a digital model from the set of images.

Continue reading “Scanning turntable digitizes objects as 3D models”

Portal Radio is why Valve needs to build hardware

We’ve seen Portal gun builds, a few cute turret replicas, and even a miniaturized version of GLaDOS, but [John]‘s Portal radio replica is the first physical version of this oft-forgotten Portal item.

Interestingly, the entire radio is made from scrap. The spheroid body shell is made from the foam insulation from a commercial freezer, carefully sculpted, Bondoed, and painted over the course of 300 hours. The radio guts are taken from an upcycled radio, and powered by either an internal battery or a wall wart DC adapter – perfect for carrying around a test chamber with a portal gun.

Right now, there’s an AM/FM receiver inside the radio along with an audio input so an iPod or such can be plugged in. While we would have loved to see a loop of theuptempo version Still Alive, we’re guessing [John] hasn’t found an easy way to do that with junked parts yet.

Check out [John]‘s build video after the break.

Continue reading “Portal Radio is why Valve needs to build hardware”