Robot Arm You Can Build At Home

[jjshortcut] has created an easy to make robot arm that has 6 degrees of freedom. There is not much to it, the frame is made out of 4mm thick hardboard, hobby servos provide the power and a handful of hardware holds it together. The frame has been successfully cut out on both a laser cutter and a cnc router, making this design even more obtainable for any aspiring roboticist.

To control the robot arms movements [jjshortcut] plans to use a standard Arduino. There are certainly plenty of servo motor shields available but he still decided to design his own. In addition to the standard motor power and servo connections, a header for an infrared receiver was added for potential future communication options.

DIY Robot Arm GripperLike any project, there were some hiccups along the way. First, several revisions of the gripper were necessary to get the correct tooth profile that resulted in smooth and tight movement. Also, while making the shield the spacing between banks of headers came out one header too close! On this first board [jjshortcut] just bent the pins so they would fit into the Arduino. You can’t let some minor snafu prevent forward momentum of a project!

[jjshortcut] has done the hard part; the design. He has made all his mechanical and electronic files available… so go and build one! Check out the video after the break.

Continue reading “Robot Arm You Can Build At Home”

The Triple Delta Robot Arm (and Leg)

delta By now you’d think we’ve seen just about every means of robotic actuator possible. We have Cartesian bots, Stewart platforms, SCARA bots, Delta bots, and even some exceedingly bizarre linkages from [Nicholas Seward]. We’re not done with odd robotic arms, it seems, and now we have Delta-ish robots that can move outside their minimum enclosed volume. They’re fresh from the workshop of [Aad van der Geest], and he’s calling them double and triple Deltas.

Previous Delta robots have used three universal joints to move the end effector up and down, and side to side. They’re extremely fast and are a great design for 3D printers and pick and place machines, but they do have a limitation: the tip of a single Delta can not move much further than the base of the robot.

By adding more parallelograms to a Delta, [Aad] greatly increases working volume of a his robots. One of the suggested uses for this style of bot is for palletizers, demonstrated in the video below by stacking Jenga blocks. There is another very interesting application: legs. There’s footage of a small, simple triple Delta scooting around the floor, supported by wire training wheels below. It makes a good cat toy, but we’d love to see a bipedal robot with this style of legs.

Continue reading “The Triple Delta Robot Arm (and Leg)”

Watch Out Artists, Robots Take Your Job Next

Move over Claude Monet, there is a new act in town in the form of a robot capable of creating some pretty cool art.

We’ve seen robotic artists before but most of them are either cartesian-based or hanging drawbots. This is a full-fledged Sharpie-wielding robotic arm that draws with dots giving its work an impressionistic feel.

The actual robotic arm is a stock Interbotix WidowX. The folks over at Phantom Multimedia wrote some custom software that takes a graphic and breaks it down into a 1-bit representation. The code then goes through the bitmap at random, picking points to draw on the medium. The hard part of this project was figuring out how to translate the 2D image into 3D robotic arm movements. Since the arm has several joints, there are multiple mathematical solutions for arm position to move the marker to any given point. The team ended up writing an algorithm to determine the most efficient way to move from point to point. Even so, each drawing takes hours.

As if that wasn’t enough, the software was then reworked to probe positions. Instead of automatically moving the arm to a predetermined point, the arm is manually moved to a location and the data retrieved from the servo encoders is used to determine the position of a probe at the end of the arm. Each point taken in this manner can then be combined to generate a 3D model.

Continue reading “Watch Out Artists, Robots Take Your Job Next”

Retrotechtacular: 6CH industrial robot

retrotechtacular-6ch-robot-arm

With this robotic arm demo video from 1975 the future really is now. Think about it, there are entire factories full of the descendants of this technology where the human workers simply feed the beast and fix it when it breaks.

We’re pretty impressed by what’s shown off below. Not because we see something we didn’t know was possible, but because the technology was so advanced nearly forty years ago. Here the arm is laying out a wiring harness on a jig. We wonder if using a single color of wire is going to make it a major pain when they add the connectors?

Obviously the mechanics were solid. Time has brought further advances in precision, reduced costs that make robots available for even small factories (often palletizing products is done by a machine similar to this), and improvements in how tasks are programmed. After all, the ability to print a hard copy of the program as a punch tape isn’t quite cutting edge for this decade.

What does that mean for you? If you look hard enough you might be able to find an older generation robot arm to hack on.

Continue reading “Retrotechtacular: 6CH industrial robot”

Salvaged robot arm used for light painting and pen plotting

The members of Shackspace got their hands on an antiquated robot arm. It’s a Mitsubishi Movemaster RM-101 and was probably manufactured in the mid 1980’s. There’s almost nothing out there that tells you how to use the thing, and so they set out to figure out how to control the hardware.

This is a great example of how an EPROM dump can be really useful. After further inspection the team discovered that the arm is driven by a Z80 processor whose program is stored on an EPROM. The first thing the guys did was dump the memory since the aging storage will be useless if just a few bits become degraded. This dump will be really useful for others whose chip has already given up the ghost. The data from that dump was disassembled and painstakingly pawed through to figure out what commands were being sent to the arm. This technique worked, as the team was able to re-implement the control protocol and has already used the arm for some light painting and pen plotting (seen above). After the break you can see a control demonstration.

Continue reading “Salvaged robot arm used for light painting and pen plotting”

Salvaged robot arm makes a big 3d printer

Wow, building a precision 3d printer is amazingly easy if you can get your hands on an industrial-quality robot arm. [Dane] wrote in to tell us about this huge extruder printer made from an ’80s-era SCARA robot arm. It is capable of printing objects as large as 25″x12″x6.5″.

This 190 pound beast was acquired during a lab clean out. It was mechanically intact, but missing all of the control hardware. Building controllers was a bit of a challenge since the it’s designed with servo motors and precision feedback sensors. This is different from modern 3d printers which use stepper motors and no feedback sensors. A working controller was built up one component at a time, with a heated bed added to the mix to help prevent warping with large builds. We love the Frankenstein look of the controller hardware, which was mounted hodge-podge as each new module was brought online.

You can see some printing action in the clip after the break. A Linux box takes a design and spits out control instructions to the hardware.

Continue reading “Salvaged robot arm makes a big 3d printer”