The Four Thousand Dollar MP3 Player

[Pat]’s friend got a Pono for Christmas, a digital audio player that prides itself on having the highest fidelity of any music player. It’s a digital audio device designed in hand with [Neil Young], a device that had a six million dollar Kickstarter, and is probably the highest-spec audio device that will be released for the foreseeable future.

The Pono is an interesting device. Where CDs have 16-bit, 44.1 kHz audio, the Pono can play modern lossless formats – up to 24-bit, 192 kHz audio. There will undoubtedly be audiophiles arguing over the merits of higher sampling rates and more bits, but there is one way to make all those arguments moot: building an MP3 player out of an oscilloscope.

Digital audio players are limited by the consumer market; there’s no economical way to put gigasamples per second into a device that will ultimately sell for a few thousand dollars. Oscilloscopes are not built for the consumer market, though, and the ADCs and DACs in a medium-range scope will always be above what a simple audio player can manage.

[Pat] figured the Tektronicx MDO3000 series scope sitting on his bench would be a great way to capture and play music and extremely high bit rates. He recorded a song to memory at a ‘lazy’ 1 Megasample per second through analog channel one. From there, a press of the button made this sample ready for playback (into a cheap, battery-powered speaker, of course).

Of course this entire experiment means nothing. the FLAC format can only handle a sampling rate of up to 655 kilosamples per second. While digital audio formats could theoretically record up to 2.5 Gigasamples per second, the question of ‘why’ would inevitably enter into the minds of audio engineers and anyone with an ounce of sense. Short of recording music from the master tapes or another analog source directly into an oscilloscope, there’s no way to obtain music at this high of a bit rate. It’s just a dumb demonstration, but it is the most expensive MP3 player you can buy.

Fixing A Multimeter’s Serial Interface

[Shane] bought a multimeter with the idea of using its serial output as a source for data logging. A multimeter with a serial port is a blessing, but it’s still RS-232 with bipolar voltage levels. Some modifications to the meter were required to get it working with a microcontroller, and a few bits of Python needed to be written, but [Shane] is getting useful data out of his meter.

The meter in question is a Tenma 72-7735, a lower end model that still somehow has an opto-isolated serial output. Converting the bipolar logic to TTL logic was as easy as desoldering the photodiode from the circuit and tapping the serial data out from that.

With normal logic levels, the only thing left to do was to figure out how to read the data the meter was sending. It’s a poorly documented system, but [Shane] was able to find some documentation for this meter. Having a meter output something sane, like the freaking numbers displayed on the meter would be far too simple for the designers of this tool. Instead, the serial port outputs the segments of the LCD displayed. It’s all described in a hard to read table, but [Shane] was able to whip up a little bit of Python to parse the serial stream.

It’s only a work in progress – [Shane] plans to do data logging with a microcontroller some time in the future, but at least now he has a complete understanding on how this meter works. He can read the data straight off the screen, and all the code to have a tiny micro parse this data.

Improving the T-962 Reflow Oven

The T-962A is a very popular reflow oven available through the usual kinda-shady retail channels. It’s pretty cheap, and therefore popular, and the construction actually isn’t abysmal. The controller for this oven is downright terrible, and [wj] has been working on a replacement firmware for the horribly broken one provided with this oven. It’s open source, and the only thing you need to update your oven is a TTL/UART interface.

[WJ] bought his T-962A even after seeing some of the negative reviews that suggested replacing the existing controller and display. This is not in true hacker fashion – there’s already a microcontroller and display on the board.

The new firmware uses the existing hardware and adds a very necessary modification: stock, the oven makes the assumption that the cold-junction of the thermocouples is at 20°C. The controller sits on top of an oven with two TRIACs nearby, so this isn’t the case, making the temperature calibration of the oven slightly terrible.

After poking around the board, [WJ] found an LPC2000-series microcontroller and a spare GPIO pin for a 1-wire temperature sensor. The temperature sensor is placed right next to the terminal block for the thermocouples for proper temperature sensing.

All the details of updating the firmware appear on a wiki, and the only thing required to update the firmware is a serial/USB/UART converter. A much better solution than ripping out the controller and replacing it with a custom one.

Creating a Scanning Monochromator

If you need a specific wavelength of light for research purposes, the naïve way of obtaining that is a white source light, a prism, and a small slit that will move across your own personal Dark Side of the Moon album cover. This is actually a terrible idea; not only won’t you have a reference of exactly what wavelength of light you’re letting through the optical slit, the prism itself will absorb more of one wavelength of light than others.

The solution is a monochromator, a device that performs the same feat of research without all the drawbacks. [Shahriar] got his hands on an old manual monochromator and decided to turn it into a device that performs automatic scans.

The key of a monochromator is a diffraction grating, a mirrored surface with many fine parallel grooves arranged in a step pattern. Because of the surface of the diffraction grating, it’s possible to separate light according to its spectrum much like a prism. Unlike a prism, it’s effectively a first surface mirror meaning all wavelengths of light are reflected more or less equally.

By adding a stepper motor to the dial of his monochromator, [Shahriar] was able to automatically scan across the entire range of the device. Inside the monochromator is a photomultiplier tube that samples the incoming light and turns it into a voltage. By sampling this voltage and plotting it with MATLAB, [Shahriar] was able to plot the intensity of every wavelength of light within the range of the device. It’s all expertly explained in the video below.

Continue reading “Creating a Scanning Monochromator”

Miter Saw Stop Saves Time and Aggravation

V Wheel Adjustable Miter Saw Stop

Miter saws are great tools for cutting pieces of wood at a variety of angles. If you have ever cut a really long piece on a miter saw there is no doubt you’ve either propped up the extended end on a pile of scrap wood or asked someone to hold the dangling piece so you could get an accurate cut. Doing either is a little hokey and is a general pain in the butt.

[Kram242] started a project that could eliminate these problems and also provides a solution to consistent length cuts of multiple pieces. It’s an adjustable stop that is sure to make miter saw cuts much less annoying.

The rig is extremely simple and consists of a piece of aluminum extrusion, v-wheel carriage and lever-actuated clamp. The movable carriage lets the operator quickly position the stop to ensure the wood is cut at the appropriate location. This stop also makes it easy to cut several pieces of wood to the exact same length.

If we had to make any suggestions for improvements it would be to add supports to the carriage that emulate the saw bed and backstop as well as an adhesive measuring tape guide.

V Wheel Adjustable Miter Saw Stop

Attiny PWM Generator and Servo Tester


Having the right tool for the job makes all the difference, especially for the types of projects we feature here at Hackaday. [Jan_Henrik’s] must agree with this sentiment, one of his latest projects involves building a tool to generate a PWM signal and test servos using an Attiny25/45/85.

Tools come in all kinds of different shapes and sizes. Even if it might not be as widely used as [Jan_Henrik’s] earlier work that combines an oscilloscope and signal generator, having a tool that you can rely upon to test servos and generate a PWM can be very useful. This well written Instructable provides all the details you need to build your own, including the schematic and the necessary code (available on GitHub). The final PWM generator looks great. For simple projects, sometimes a protoboard is all you need. It would be very cool to see a custom PCB made for this project in the future.

What tools have you build recently? Indeed, there is a tool for every problem. Think outside the (tool) box and let us know what you have made!

Helix Turning Tool Born From Necessity

helix turning tool

Sometimes while working on a project there comes a point where a specialized tool is needed. That necessary tool may or may not even exist. While [Fabien] was working on his DNA Lamp project he needed to bend a copper wire into a helical shape. Every one of us has wrapped a wire around a pencil and made a little springy thing at some point. While the diameter may have been constant, the turn spacing certainly was not. [Fabien] came up with a simple gizmo to solve that problem.

The tool utilizes an 8mm rod that will ensure the ID of the helix is indeed 8mm. We’ve already discussed that was the easy part. To make certain the turn spacing is not only consistent but also of the correct amount, a wooden frame is used. The frame has holes in it to allow the 8mm rod to pass through. Adjacent to those rod holes are much smaller holes just a bit larger than the copper wire that will become the helix. These holes are drilled at an angle to produce the correct turn spacing. [Fabien] figured out the correct angle by taking the desired turn spacing distance, helix diameter and wire diameter and plopping it in this formula:

Continue reading “Helix Turning Tool Born From Necessity”