Helix Turning Tool Born From Necessity

helix turning tool

Sometimes while working on a project there comes a point where a specialized tool is needed. That necessary tool may or may not even exist. While [Fabien] was working on his DNA Lamp project he needed to bend a copper wire into a helical shape. Every one of us has wrapped a wire around a pencil and made a little springy thing at some point. While the diameter may have been constant, the turn spacing certainly was not. [Fabien] came up with a simple gizmo to solve that problem.

The tool utilizes an 8mm rod that will ensure the ID of the helix is indeed 8mm. We’ve already discussed that was the easy part. To make certain the turn spacing is not only consistent but also of the correct amount, a wooden frame is used. The frame has holes in it to allow the 8mm rod to pass through. Adjacent to those rod holes are much smaller holes just a bit larger than the copper wire that will become the helix. These holes are drilled at an angle to produce the correct turn spacing. [Fabien] figured out the correct angle by taking the desired turn spacing distance, helix diameter and wire diameter and plopping it in this formula:

Continue reading “Helix Turning Tool Born From Necessity”

DIY Router Base For Your Dremel


Dremel rotary tools are handy. Some of the attachments are convenient.  [vreinkymov] felt the convenience wasn’t worth the cost, so he decided to make a Router Base for his Dremel. These types of attachments are used to hold the Dremel perpendicular to the work surface.

Underneath the little nut/cover near the spindle of the Dremel, there is a 3/4″-12 threaded feature used to attach accessories. A quick trip down the hardware store’s plumbing aisle resulted in finding a PVC reducer with the correct female thread to fit the Dremel. Once on the rotary tool, the reducer threads into a PVC nipple that is glued to a piece of acrylic. The acrylic acts as the base of the router attachment.

Continue reading “DIY Router Base For Your Dremel”

Build Your Own Desoldering Station on the Cheap

Desoldering Station on the Cheap

[Sable Wolf] tipped us off to his DYI desoldering station for under $70. We know we have seen this conversion before, but it hasn’t been featured on Hack a Day. [Sable Wolf’s] hack is unique and has added features that make building, cleaning and the overall longevity sounder. However, some kind of sound deadening housing would have to be built around the pump as it seemed uncomfortably loud in the video.

Some Chinese made desoldering stations are getting quite cheap so maybe it’s not worth the effort unless you can salvage more components for the build. Thanks to [Sable Wolf’s] detailed blog you can browse through his BOM and scrounge up the majority of these items from your salvage bins. A cheap but reliable desoldering station would be an extremely handy tool to have on your bench.

This is much safer than desoldering with a candle or using fire as featured in the past, and is kind of a flip around on the SMD hot air pencil hack.

Follow long after the break to watch the video of the desoldering station in action.

Continue reading “Build Your Own Desoldering Station on the Cheap”

Connecting an old scope to a computer


A friend of [Michael]’s said his company was getting rid of some old lab equipment and asked him if he wanted a very large and very old digital storage oscilloscope. A ‘hell yes’ and we’re sure a few beers later, [Michael] found an old Gould 200 MHz four-channel scope on his bench. Even 20 years after its production it’s still a capable tool, but the serial ports on the back got [Michael] wondering – would it be possible to plot the screen of the scope on his computer?

The scope has three ports on the back – GPIB, miscellaneous I/O, and RS423. The latter of those ports is similar enough to RS232 that a USB to Serial converter just might work, and with the help of a null modem cable and a terminal, [Michael] was able to connect to this ancient scope.

In the manual, [Michael] found a the serial commands for this scope. The most useful of these is a command that prints out the contents of the scope’s trace memory as a series of 1-byte integers. With a short bit of PERL programming, [Michael] can create a PDF plot of whatever is on the scope’s screen. It’s formatted perfectly for Gnuplot, MATLAB, or even Excel.

Awesome work, and especially useful given these old scopes are slowly making their way to a technological boneyard somewhere.

Upgrading a hackerspace’s shelving


Shelving is probably one of the most underappreciated items in the shop. Think about it; would you rather have a place to store boxes, or a fancy new thickness planer, laser cutter, or pick and place machine. The folks over at the 23B hackerspace were growing tired of their disintegrating Ikea shelving unit and decided to make some shelves. They didn’t phone this one in, either: these shelves will be around far longer than you or I.

[Chris], the creator of these wonderfully useful pieces of metal, was inspired by a video featuring [Jamie Hyneman] of Mythbusters fame. An entire 80 foot section of M5 Industries, [Jamie]’s shop, is covered in shelving units constructed out of square steel tubing, put together in a way that’s easy to construct and able to handle amazing amounts of random stuff.

The new shelves for the 23B shop follow a similar design as the shelves over at M5, only a bit smaller in scale. It’s a wonderful beginner’s project for a welding and fabrication class, and more than sturdy enough to handle a few pull-ups.

Fixing tools with 3D printers


Over at the Manchester Hackerspace, [Bob] has been busy getting a 30-year-old bandsaw up and running. The saw worked great, but it was missing a fence, making straight cuts difficult to say the least.  The solution, of course, was to build a new fence, and [Bob] decided to capitalize on his hackerspace’s workshop by making a new fence with a 3d printer.

[Bob] began by taking careful measurements of the saw’s table and the channel running down the length of it. These measurements were plugged into OpenSCAD, and after a few iterations, [Bob] had an extremely well-fitting profile a fence could be attached to.

With the profile down, [Bob] created a new part in OpenSCAD that would hold an aluminum angle piece. This was attached to the plastic parts with screws, and the entire assembly clamps down to the saw with the help of a few 5mm bolts. For a machine that is usually dedicated to making 3D printer parts and Yoda heads, [Bob] did a great job making good use of his 3D printer.

Testing caps with a DIY ESR meter

There’s a problem with collecting old tube amps and vintage electronics – eventually the capacitors in these machines will die. It’s not an issue of a capacitor plague that causes new electronics to die after a few years; with time, just about every capacitor will dry out, rendering antique electronics defective. The solution to getting old gear up and running is replacing the capacitors, but how do you know which ones are good and which are bad? With [Paulo]’s DIY ESR meter, of course.

An ideal capacitor has a zero equivalent series resistance, and failure of a capacitor can be seen as an increase in its ESR. Commercial ESR meters are relatively cheap, but [Paulo] was able to build one out of a 555 chip, a small transformer, and a few other miscellaneous components.

The entire circuit is built on stripboard, and if you’re lucky enough to find the right parts in your random parts bin, you should be able to build this ESR meter with components just laying around.