A look inside what makes cruise control work

[Todd Harrison] took a look inside the business end of the cruise control system from his 1994 Jeep Grand Cherokee. We were a bit surprised at how the system operates. The parts seen in the image above make up the throttle control, using a trio of solenoids to vary the level of vacuum inside the device.

We categorized this as a repair hack, but [Todd] is just rubbernecking and doesn’t have any real plan to fix the system. It’s been on the fritz for ten years and this piece may not even be the culprit. But we’re still satisfied because he gives us a look at the system which uses the amber-colored stoppers on the three solenoids to plug three different sizes of weep holes. The unit is a vacuum enclosure where a throttle wire connects to a rubber diaphragm and adjust engine speed as the diaphragm moves. The vehicle’s computer actuates the three solenoids, allowing leakage to vary the level of vacuum, thereby keeping the throttle at just the right level. Neat!

Continue reading “A look inside what makes cruise control work”

Hacking together two shop vacuums

Unfortunately the result of hacking together two shop vacuums isn’t a double-power monstrosity. This is actually the story of combining broken and substandard parts into one usable machine. The guys at the Shackspace originally bought a cheap shop vacuum whose motor gave up the ghost way too quickly. The replacement had only a tiny container for rubbish. So they did what any group of hackerspace members would and combined the two.

Since they wanted to use the voluminous enclosure from the broken vacuum the first order of business was to remove the dead motor assembly. Quick work was made of this by melting away the plastic using an old soldering iron. The motor assembly from the small machine was then mounted in place with screws, and sealed with caulk. It was now working, thanks to salvaged hoses and attachments from other long-lost vacuums.

But a boring hack this might have been if they stopped there. The team added a wall outlet to the top, and adorned the beast with RGB LEDs which are powered from a wall wart (hence the added wall outlet). It can double as a mood light when not in use.

[Thanks Momo]

Printable solar cells that can be folded up when not in use

Here’s a photovoltaic cell that can be printed onto paper. The manufacturing technique is almost as simple as using an inkjet printer. The secret is in the ink itself. It takes five layers deposited on the paper in a vacuum chamber. But that’s a heck of a lot easier than current solar cell fabrication practices. In fact, is sounds like the printing process is very similar to how potato chip bags are made. This is significant, because it could mean a fast track to mass production for the technology.

It isn’t just the easy printing process that excites us. Check out the video after the break where a test cell is placed on top of a light source while being monitored by a multimeter. It’s been folded like a fan and you can see a researcher sinch up the cell into a small form for storage. It’s a little counter-intuitive; for instance, you wouldn’t want to make a window shade out of it because it would have to be down during the day to get power. Be we think there’s got to be some great use for these foldable properties. Continue reading “Printable solar cells that can be folded up when not in use”

Robot vacuum makes cleaning into a game

This is not a Roomba hack, but a ground-up vacuum cleaner robot build. It’s the result of a class project from six students at the Royal Institute of Technology in Sweden. There’s a slew of information available in their paper, but fair warning that it’s an 8.6 MB PDF file that we couldn’t get Google to translate. We were able to skim the PDF and cut and paste to translate the interesting bits we found.

Unlike a Roomba, which just uses a little sweeper to pick up debris, this robot actually includes a vacuum. The image above shows that the cylindrical body is wrapped in an LED matrix, with an ultrasonic sensor on the front for obstacle avoidance. The robot uses a CAN bus to control the various modules inside. We don’t think there’s any autonomous function, but that’s made up for by the remote control. It communicates via a ZigBee module, and includes a d-pad, touch screen, and accelerometer.We’re a little bit hazy on how the games are played, but there are at least two interactive version: one called ball, and another modeled after the classic game of missile command.

You can check out the source code for the project in their repository, or join us after the break for two demo videos.

Continue reading “Robot vacuum makes cleaning into a game”

A pick and place machine for under $1k

Pick and place machines are marvels of modern technology. They the can lift, orient, align and drop tiny electronic components onto a circuit board that is headed for the reflow oven. On an industrial scale they move so fast it’s a blur in front of your eyes, and they use imaging to ensure proper placement. But that kind of specialized equipment is going to cost a real bundle of money. [Bootstrap] is working on a design that will still be feature-rich, but will allow you to purchase your own pick-and-place machine for under $1000.

The design calls for a two-headed beast. One head is a vacuum tweezers which is capable of moving the parts. The other is a digital microscope that is used for precise positioning. The two heads pivot in and out of place, but it’s the table which holds the PCB that is responsible for positioning the parts. Although there’s nothing built yet, the depth of information that [Bootstrap] published in his post is impressive. He’d like your help making sure there’s no errors in the design before he builds the first three prototypes. If you’re a Solidworks guru he’ll even send you the files upon request.

We’ve seen a couple of different pick and place machines lately so take another look if you missed them the first time.

[via Adafruit]

Making your own lab instruments

[Andrey Mikhalchuk] is trying to gather a base set of lab instruments. Specifically, he’s looking for hardware that will let him quickly filter solids out of a liquid. He first started by adding a cotton disk to a plastic funnel. It does the job, but when left to gravity it’s quite slow. He needed a way to speed up the flow even when the filter is heavily clogged with particulates.

There’s already a solution to this problem. It’s a glass container called a Büchner Flask. These feature a glass tube coming out from the neck. By hooking a vacuum pump up to this tube, reduced pressure inside the flask will pull the liquid through the filter in no time. Rather than purchase the specialty item, [Andrey] altered a rubber stopper to accept both the funnel, and a glass tube. This is a cheaper version because it uses a common conical flask but it works just as well. To create the vacuum, an altered bike pump was used. Check out videos of both hacks after the break. Continue reading “Making your own lab instruments”

Update: Open source pick-and-place

[Tim's] been busy moving his pick-and-place build toward completion. We looked in on the first version of the vacuum head back in October. Since then he’s ditched the camera enclosure which allows for more light and better mounting. The tip has been replaced by one from a pair of vacuum tweezers, and the whole thing is now mounted on a diy CNC machine. The video after the break shows it picking up that IC and moving it around the table. Looks like the part rotation feature is very accurate.

He mentions that the CNC he’s using is quite slow. We hope he checks out this printable Delta robot; hardware that is often used with pick and place machines.

Continue reading “Update: Open source pick-and-place”