New Part Day: SD NAND Are Surface Mount Chips That Work Like An SD Card

SD cards have long been a favorite with microcontroller hobbyists. Cheap, readily available, and easily interfaced, they remain a staple for small projects that need to store a lot of data. Now, they’re available in chip form! These are known as SD NAND parts that emulate the SD card interface itself.

[LadyAda] recently gave them a test-drive after spotting a tweet from [Greg Davill] (who we’re familiar with thanks to his excellent LED cubes). The devices are manufactured by XTX Technology and available from LCSC in a range of 1, 2, 4, and 8 GB sizes. [Ivan Grokhotkov] also illuminated a similar device from another maker in a reply to [Greg’s] original tweet, so there may be more sources out there.

These chips come in standard LGA8 surface mount package and can be easily soldered to a board, offering mechanical and manufacturing benefits versus using a normal SD or microSD card in a slot-type connector. Also, unlike other SMD flash memory parts, they handle all the file system details and wear levelling for you! With the inflation of SD card sizes, it’s also difficult to find these on the shelf in normal cards these days.

[Adafruit] plan to have a breakout for these parts out soon with a level shifter included for ease of use. We can imagine these chips finding their way into all manner of datalogger projects, since they can be ordered with other parts and permanently soldered into a design. If you’ve got a particularly good idea where these chips would prove useful, sound off in the comments. Video after the break.

Continue reading “New Part Day: SD NAND Are Surface Mount Chips That Work Like An SD Card”

The Black Magic Of A Disappearing Linear Actuator

Many of the projects we serve up on Hackaday are freshly minted, hot off the press endeavors. But sometimes, just sometimes, we stumble across ideas from the past that are simply too neat to be passed over. This is one of those times — and the contraption in question is the “Kataka”, invented by [Jens Sorensen] and publicised on the cover of the Eureka magazine around 2003.

The device, trademarked as the Kataka but generically referred to as a Segmented Spindle, is a compact form of linear actuator that uses a novel belt arrangement to create a device that can reduce to a very small thickness, while crowing to seemingly impossible dimensions when fully extended. This is the key advantage over conventional actuators, which usually retract into a housing of at least the length of the piston.

It’s somewhat magical to watch the device in action, seeing the piston appear “out of nowhere”. Kataka’s youtube channel is now sadly inactive, but contains many videos of the device used in various scenarios, such as lifting chairs and cupboards. We’re impressed with the amount of load the device can support. When used in scissor lifts, it also offers the unique advantage of a flat force/torque curve.

Most records of the device online are roughly a decade old. Though numerous prototypes were made, and a patent was issued, it seems the mechanism never took off or saw mainstream use. We wonder if, with more recognition and the advent of 3D printing, we might see the design crop up in the odd maker project.

That’s right, 3D printed linear actuators aren’t as bad as you might imagine. They’re easy to make, with numerous designs available, and can carry more load than you might think. That said, if you’re building, say, your own flight simulator, you might have to cook up something more hefty.

Many thanks to [Keith] for the tip, we loved reading about this one!

Continue reading “The Black Magic Of A Disappearing Linear Actuator”

Think Your Laptop Is Anemic? Try An MSDOS One

If someone gifted you a cheap laptop this holiday season, you might be a little put out by the 2GB of RAM and the 400 MHz CPU. However, you might appreciate it more once you look at [Noel’s Retro Lab’s] 4.8 Kg Amstrad PPC512 He shows it off inside and out in the video below.

Unlike a modern laptop, this oldie but goodie has a full keyboard that swings out of the main body. The space below the keyboard contains the LCD screen, which [Noel] is going to have to replace with an LCD from another unit that was in worse shape but had a good-looking screen. In this video, he gets as far as getting video output to an external monitor, but neither LCD shows any sign of life. But he’s planning more videos soon.

Continue reading “Think Your Laptop Is Anemic? Try An MSDOS One”

Twenty Seconds At 100 Megakelvins

The Korea Superconducting Tokamak Advanced Research (KSTAR) magnetic fusion reactor claimed a new record last month — containing hydrogen plasma at 100 megakelvins for 20 seconds. For reference, the core temperature of the Earth’s Sun is a mere 15 megakelvins, although to be fair, it has been in operation quite a bit longer than 20 seconds.

South Korea is a member of the International Thermonuclear Experimental Reactor (ITER) team, a worldwide project researching the science and engineering of nuclear fusion. One of their contributions to the effort is the KSTAR facility, located in the city of Daejeon in the middle of the country (about 150 km south of Seoul).

It is a tokamak-style fusion research reactor using superconducting magnets to generate a magnetic flux density of 3.5 teslas and a plasma current of 2 megaamperes. These conditions are used to confine and maintain the plasma in what’s called the high-confinement mode, the conditions currently favored for fusion reactor designs. Since it went into operation in 2008, it has been creating increasingly longer and hotter “pulses” of plasma.

For all the impressive numbers, the toroidal reactor itself is not that huge. Its major diameter is only 3.6 meters with a minor diameter of 1 meter. What makes the facility so large is all the supporting equipment. Check out the video below — we really like the techniques they use in this virtual tour to highlight key components of the installation.

Continue reading “Twenty Seconds At 100 Megakelvins”

Co41D 2020 MIDI Theremin Sounds Pretty Sick

As the pandemic rages on, so does the desire to spend the idle hours tinkering. [knaylor1] spent the second UK lockdown making a sweet Theremin-inspired noise machine with a low parts count that looks like a ton of fun.

It works like this: either shine some light on the photocells, cover them up, or find some middle ground between the two. No matter what you do, you’re going to get cool sounds out of this thing.

The photocells behave like potentiometers that are set up in a voltage divider. An Arduino UNO takes readings in from the photocells, does some MIDI math, and sends the serial data to a program called Hairless MIDI, which in turn sends it to Ableton live.

[knaylor1] is using a plugin called TAL Noisemaker on top of that to produce the dulcet acid house tones that you can hear in the video after the break.

If you’ve never played with light-dependent resistors before, do yourself a favor and spend a little bit of that Christmas cash on a variety pack of these things. You don’t even need an Arduino to make noise, you can use them as the pots in an Atari Punk console or make farty square waves with a hex inverting oscillator chip like the CD40106. Our own [Elliot Williams] once devoted an entire column to making chiptunes.

Continue reading “Co41D 2020 MIDI Theremin Sounds Pretty Sick”

Build Your Own Custom Elevator

There are a lot of things in our everyday life that are holdovers from an earlier time that we continue to use simply because of inertia even if they don’t make a lot of sense in modern times. Examples include a 60 Hz power grid, the spacing between railroad tracks, and of course the self-contained attic ladder which is made to fit in between standard spaced ceiling joists. It’s not wide enough to get big or heavy stuff into an attic, and building standards won’t change just for this one inconvenience, so if you want to turn that space into something more usable you’re going to need to build a custom elevator.

This attic elevator comes to us from [Brian] who recently moved into a home with about half the square footage as his previous home, but still needed to hold all of his stuff. That means clever ways of using the available space. For the elevator he constructed a platform out of 2x lumber held together with bolts and steel supports. The carriage runs up and down on a track made out 1 5/8″ super strut and is hoisted by a winch motor rated for 550 pounds, which is more than enough to hoist up most household items including a large toolbox.

The only thing that we would have liked to have seen in the video is how the opening was made. Presumably this would have involved cutting into a ceiling joist to make the opening wider than the standard attic ladder, and care would have needed to be taken to ensure the ceiling/floor wasn’t weakened. Either way, this is a great solution to a common problem, and could perhaps be made to work on more than two levels with a custom controller. Continue reading “Build Your Own Custom Elevator”

Netscape Communicator And SHA-1 Written Into Brexit Agreement

We pity the civil servants involved in the negotiations between the European Union and the United Kingdom, because after tense meetings until almost the Eleventh Hour, they’ve had to cobble together the text of a post-Brexit trade agreement in next-to-no time. In the usual manner of such international agreements both sides are claiming some kind of victory over fish, but the really interesting parts of the document lie in the small print. In particular it was left to eagle-eyed security researchers to spot that Netscape Communicator 4, SHA-1, and RSA encryption with a 1024-bit key length are recommended to secure the transfer of DNA data between states. The paragraphs in question can be found on page 932 of the 1256-page agreement.

It’s likely that some readers under 30 years old will never have used a Netscape product even though they will be familiar with Firefox, the descendant Mozilla software. Netscape were a pioneer of early web browsers, and  Communicator 4 was the company’s all-in-one browser and email offering from the late 1990s. It and its successors steadily lost ground against Microsoft’s Internet Explorer, and ultimately faded away along with the company under AOL ownership in the late 2000s. Meanwhile the SHA-1 hashing algorithm has been demonstrated to be vulnerable to collision attacks, and computing power has advanced such that 1024-bit RSA encryption can be broken in a sensible time frame by anyone with sufficient GPU power to give it a try. It’s clear that something is amiss in the drafting of this treaty, and we’d go so far as to venture the opinion that a tired civil servant simply cut-and-pasted from a late-1990s security document.

So will the lawmakers of Europe now have to dig for ancient software as mandated by treaty? We hope not, as from our reading they are given as examples rather than as directives. We worry however that their agencies might turn out to be as clueless on digital security as evidently the civil servants are, so maybe Verizon Communications, current owners of the Netscape brand, could be in for a few support calls.