How Is Voyager Still Talking After All These Years?

The tech news channels were recently abuzz with stories about strange signals coming back from Voyager 1. While the usual suspects jumped to the usual conclusions — aliens!! — in the absence of a firm explanation for the anomaly, some of us looked at this event as an opportunity to marvel at the fact that the two Voyager spacecraft, now in excess of 40 years old, are still in constant contact with those of us back on Earth, and this despite having covered around 20 billion kilometers in one of the most hostile environments imaginable.

Like many NASA programs, Voyager has far exceeded its original design goals, and is still reporting back useful science data to this day. But how is that even possible? What 1970s-era radio technology made it onto the twin space probes that allowed it to not only fulfill their primary mission of exploring the outer planets, but also let them go into an extended mission to interstellar space, and still remain in two-way contact? As it turns out, there’s nothing magical about Voyager’s radio — just solid engineering seasoned with a healthy dash of redundancy, and a fair bit of good luck over the years.

Continue reading “How Is Voyager Still Talking After All These Years?”

The blue LEGO brick described, with the OLED inside shining through the 3D-printed and subsequently cast brick body. The picture on the small OLED imitates the lines of text shown on the brick that this is an imitation of.

Computer-Shaped LEGO Brick Brought To Life

In childhood, many of us wondered — wouldn’t it be cool if our miniature toys had “real” functions? Say, that our toy cars actually were able to drive, or at least, that the headlights could light up. [James Brown] captures some of this childhood expectation of magic, recreating the 2×2 45°-sloped Lego bricks with computer screens and panels drawn on them by building a LEGO brick (thread, nitter) with an actual display inside of it.

This is possible thanks to an exceptionally small OLED display and a microcontroller board that’s not much larger. It’s designed to plug onto a LEGO platform that has an internal 9V battery, with power exposed on the brick’s studs. [James] has taken care building this — the brick was built with help of a tiny 3D-printed form, and then, further given shape by casting in what appears to be silicone or resin.

We’ve yet to hear more details like the microcontroller used — at least, the displays look similar to the ones used in a different project of [James]’, a keyboard where every keycap has a display in it (thread, nitter). Nevertheless, it is lovely to witness this feat of micro-engineering and fabrication. It reminds us of an another impressive build we covered recently — a 1/87 scale miniature Smart Car that’s as functional as you can get!

Continue reading “Computer-Shaped LEGO Brick Brought To Life”

Unorthodox Toolbox Switcheroo: Barbecue!

Despite all the progress in cooking methods over the past millennia, nothing can ever replace the primeval sensation of staring into the embers as your food slowly gets ready. Barbecues are the obvious choice to satisfy this cave nostalgia, and while size might matter in some cases, sometimes you just want the convenience of being able to take your grilling device to the beach, park, or just really anywhere but home. Other times you’re [Laura Kampf] and don’t want to use an old toolbox for storing tools.

It all started with one of those typical three-layer folded cantilever toolboxes that [Laura] really likes for their mechanical construction, but not so much from a usability point of view. Being someone with a knack for turning random stuff into barbecues, this was an intriguing enough device to take apart. After plenty of time spent grinding bolts and paint off, she cut out the tray bottoms to weld metal mesh pieces as grill grates in their place — but you can watch the whole progress in the video below then.

The folding mechanics play out really nicely here. Not only can you access the grill goods by moving them away from the burning coals that are placed in the center bottom part of the box, it also provides you with two different heat layers. The individual lids on each side add even more variety, and this might even work as portable little smoker.

We’ve seen [Laura]’s work a few times before already, and in case you haven’t, go check out her beer keg motorcycle side car, wheelbarrow bicycle trailer, or Zippo lighter turned drill bit storage box.

Continue reading “Unorthodox Toolbox Switcheroo: Barbecue!”

A Breath Of Fresh Air For Some Arcade Classics

It’s said that good things come in small packages, which is hard to deny when we look at all the nifty projects out there that were built into an Altoids tin. Now, if that’s already true for the regular sized box, we can be doubly excited for anything crammed into their Smalls variety ones, which is what [Kayden Kehe] decided to use as housing for his mintyPico, a tiny gaming console running homebrew versions of Snake, Breakout, Pong, and a few more.

As the “Pico” might have already given away, the project is built around a Raspberry Pi Pico board, and being intended as portable device, [Kayden] went with a version that also houses LiPo battery charging circuitry. A set of 3d-printed parts pack the board along with a matching battery and a button panel neatly into the tin itself, while a size-appropriate SSH1106 OLED goes into the lid. All design files along with the MicroPython code of the games can be found on the project’s GitHub page.

You may have felt this strange sense of familiarity when you read the project’s name, and indeed, the mintyPi gaming console was a major inspiration for [Kayden] here, as was the Pico Snake project. Considering this was his junior year high school project, this is certainly an impressive and nice mash-up of those two projects.

Continue reading “A Breath Of Fresh Air For Some Arcade Classics”

LTSpice Tips And A Long Tutorial

We always enjoy videos from [FesZ], so when we saw his latest about tips and tricks for LTSpice, we decided to put the 20 minutes in to watch it. But we noticed in the text that he has an entire series of video tutorials about LTSpice and that this is actually episode 30. So there’s plenty to watch.

Like any tips and tricks video, you might know some of them and you may not care about some of them — for example, the first one talks about setting the colors which is a highly personal preference.  But it is a good bet you’ll find something to like in the video.

Continue reading “LTSpice Tips And A Long Tutorial”

The World’s Most Expensive 3D Printers

How much would you pay for a 3D printer? Granted, when we started a decent printer might run over $1,000 but the cost has come way down. Unless of course, you go pro. We were disappointed that this [All3DP] post didn’t include prices, but we noticed a trend: if your 3D printer has stairs, it is probably a big purchase. According to the tag line on the post, the printers are all north of $500,000.

Expensive printers usually have unique technology, higher degrees of automation, large capacity or some combination of that, and a few other factors. At least two of the printers mentioned had stairs to reach the top parts of the machine. And the Black Buffalo — a cement printer — uses a gantry that looks like it is part of a light show at a concert. It is scalable, but apparently can go up to three stories tall!

Continue reading “The World’s Most Expensive 3D Printers”

Automate Parts Kitting With This Innovative SMD Tape Slicer

Nobody likes a tedious manual job prone to repetitive stress injury, and such tasks rightly inspire an automated solution. This automatic SMD tape cutter is a good example of automating such a chore, while leaving plenty of room for further development.

We’re used to seeing such tactical automation projects from [Mr Innovative], each of which centers on an oddly specific task. In this case, the task involves cutting a strip containing a specific number of SMD resistors from a reel, perhaps for assembling kits of parts. The mechanism is simple: a stepper motor with a rubber friction wheel to drive the tape, and a nasty-looking guillotine to cut the tape. The cutter is particularly interesting, using as it does a short length of linear bearing to carry a holder for a razor blade that’s mounted perpendicular to the SMD tape. The holder is mounted to a small motor via a crank, and when the proper number of parts have been fed out, the motor rotates one revolution, driving the angled blade quickly down and then back up. This results in a shearing cut rather than the clipping action seen in this automated wire cutter, also by [Mr Innovative].

Curiously, there seems to be no feedback mechanism to actually measure how many resistors have been dispensed. We assume [Mr Innovative] is just counting steps, but it seems easy enough to integrate a photosensor to count the number of drive sprocket holes in the tape. It also seems like a few simple changes would allow this machine to accommodate SMD tapes of different sizes, making it generally useful for SMD kitting. It’s still pretty cool as a tactical project, though, and does a great job inspiring future improvements.

Continue reading “Automate Parts Kitting With This Innovative SMD Tape Slicer”