A Simple Portable PS4 Build

Building a portable console is hard, right? You have to do lots of wiring, maybe trim a few PCBs, and learn all about the finer points of high-end motherboard design! Or, you could keep it simple. That’s just what [Francesco6n] did when he built this portable PS4.

The aim for this build wasn’t to build the smallest, sleekest, or prettiest portable PS4. It was just to build a functional one that worked. To that end, the guts of the PS4 was installed in a 3D-printed case decorated with the usual square-circle-cross-triangle motif. A 1024×600 Acer Aspire One laptop display was installed in a clamshell configuration to act as the screen for the build. Inside the case is a large GPU-style cooler which helps keep temperatures down. As for power, there’s no need to plug this thing in everywhere you go. Instead, it’s capable of running for up to 90 minutes continuously thanks to a battery pack consisting of eighteen 18650 cells. In a beautiful touch of cross-platform cooperation, an Xbox 360 supply is used to power the thing when mains power is available.

It’s a neat build, and one that doesn’t overcomplicate things. Projects like this are a great way to get your feet wet with portable console hacking, letting you learn the ropes without too much pressure. More pictures after the break.
Continue reading “A Simple Portable PS4 Build”

Hydrogen Generation With Seawater, Aluminum, And… Coffee?

A team at MIT led by [Professor Douglas Hart] has discovered a new, potentially revelatory method for the generation of hydrogen. Using seawater, pure aluminum, and components from coffee grounds, the team was able to generate hydrogen at a not insignificant rate, getting the vast majority of the theoretical yield of hydrogen from the seawater/aluminum mixture. Though the process does use indium and gallium, rare and expensive materials, the process is so far able to recover 90% of the indium-gallium used which can then be recycled into the next batch. Aluminum holds twice as much energy as diesel, and 40x that of Li-Ion batteries. So finding a way to harness that energy could have a huge impact on the amount of fossil fuels burned by humans!

Pure, unoxidized aluminum reacts directly with water to create hydrogen, as well as aluminum oxyhydroxide and aluminum hydroxide. However, any aluminum that has had contact with atmospheric air immediately gets a coating of hard, unreactive aluminum oxide, which does not react in the same way. Another issue is that seawater significantly slows the reaction with pure aluminum. The researchers found that the indium-gallium mix was able to not only allow the reaction to proceed by creating an interface for the water and pure aluminum to react but also coating the aluminum pellets to prevent further oxidization. This worked well, but the resulting reaction was very slow.

Apparently “on a lark” they added coffee grounds. Caffeine had already been known to act as a chelating agent for both aluminum and gallium, and the addition of coffee grounds increased the reaction rate by a huge margin, to the point where it matched the reaction rate of pure aluminum in deionized, pure water. Even with wildly varying concentrations of caffeine, the reaction rate stayed high, and the researchers wanted to find out specifically which part of the caffeine molecule was responsible. It turned out to be imidazole, which is a readily available organic compound. The issue was balancing the amount of caffeine or imidazole added versus the gallium-indium recovery rate — too much caffeine or imidazole would drastically reduce the recoverable amount of gallium-indium.

Continue reading “Hydrogen Generation With Seawater, Aluminum, And… Coffee?”

Globe-Shaped World Clock Is A 3D-Printed Mechanical Marvel

Time zones are a complicated but necessary evil. Humans like the numbers on the clock to vaguely match up with what the sun is doing in the sky outside. To that end, different places in the world keep different time. If you want to keep track of them in a very pretty fashion, you might consider building a fancy and beautiful World Clock like [Karikuri] did. 

The design is based around a globe motif, mimicking the world itself. Only, on the surface of the globe, there are clock faces instead of individual countries. Each clock runs to its own time, directed by a complicated assemblage of 3D-printed gears. Mechanical drive is sent to the globe from a power base, which itself carries a mechanical seven-segment display. This too can display the time for different regions by using the controls below. It’s also useful for setting the clock to the correct time.

It’s a little difficult to follow the build if you don’t speak Japanese. However, quality subtitles are available in English if you choose to enable them.

We’ve seen [Karikuri’s] work before. We’ve also featured a great many world clocks over the years, including this particularly beautiful example that tracks night and day. Just don’t expect it to keep track of moon time. Video after the break.

Continue reading “Globe-Shaped World Clock Is A 3D-Printed Mechanical Marvel”

Can You Hack The RP2350? There’s $10,000 On The Line

The Raspberry Pi Foundation had their new RP2350 chip audited by Hextree.io, and now, both companies want to see if you can hack it. Just to prove that they’re serious, they’re putting out a $10,000 bounty. Can you get inside?

The challenge to hack the chip is simple enough. You need to dump a secret that is hidden at OTP ROW 0xc08. It’s 128 bits long, and it’s protected in two ways—by the RP2350’s secure boot and by OTP_DATA_PAGE48_LOCK1. Basically, the chip security features have been activated, and you need to get around them to score the prize.

The gauntlet was thrown down ahead of DEF CON, where the new chip was used in the event badges. Raspberry Pi and Hextree.io invited anyone finding a break to visit their booth in the Embedded Systems Village. It’s unclear at this stage if anyone claimed the bounty, so we can only assume the hunt remains open. It’s been stated that the challenge will run until 4 PM UK time on September 7th, 2024.

Hacking microcontrollers is a tough and exacting art. The GitHub repo provides full details on what you need to do, with the precise rules, terms, and conditions linked at the bottom. You can also watch the challenge video on Hextree.io.

Prusa Picks Up The Pace With New MK4S Printer

One of the things you’re paying for when you buy a 3D printer from Prusa Research is, essentially, your next 3D printer. That’s because Prusa’s machines are designed to be upgraded and modified as time goes on. An upgrade kit is always released to allow each older printer to be converted into its successor, and while there’s occasionally been some debate about whether or not it’s the most cost-effective choice, at least it is a choice you have as an owner.

If you’ve got a Prusa MK4, you’ll soon get to make that decision for yourself. Announced earlier today, the new MK4S brings some notable changes to last year’s printer. The $99 upgrade is scheduled to be available by the end of the month for existing owners, but if you’ve been on the fence about joining Team Orange and Black, you can purchase the MK4S right now in both kit and assembled forms for the same price ($799 and $1,099 respectively) as the previous MK4.

Continue reading “Prusa Picks Up The Pace With New MK4S Printer”

Audio On Pi: Here Are Your Options

There are a ton of fun Raspberry Pi and Linux projects that require audio output – music players, talking robots, game consoles and arcades, intelligent assistants, mesh network walkie-talkies, and much more! There’s no shortage of Pi-based iPods out there, and my humble opinion is that we still could use more of them.

To help you in figuring out your projects, let’s talk about all the ways you can use to get audio out of a Pi or a similar SBC. Not all of them are immediately obvious and you ought to know the ropes before you implement one of them and get unpleasantly surprised by a problem you didn’t foresee. I can count at least five ways, and they don’t even include a GPIO-connected buzzer!

Let’s rank the different audio output methods, zoning in on things like their power consumption, and sort them by ease of implementation, and we’ll talk a bit about audio input options while we’re at it.

Continue reading “Audio On Pi: Here Are Your Options”

Pi Pico SDR On A Breadboard

How hard is it to make a fully standalone SDR? [101 Things] shows you how to take a breadboard, a PI Pico, and two unremarkable chips to create a capable radio. You can see the whole thing in the video below.

The design uses a standard Tayloe demodulator. There’s also an encoder and an OLED display for a user interface. You might also want to include some PC speakers to get a bit more audio out of the device.

Continue reading “Pi Pico SDR On A Breadboard”