The Tape Speed Keyboard

For those who experienced any part of the 1960s, even if it’s just experiencing the music from that era here in the future, the sound of the Mellotron is immediately recognizable. The Moody Blues were famous for using the tape-based instrument, and the Beatles and David Bowie produced hits with it as well. It’s haunting sounds are still highly prized today, but the complexity, cost, and maintenance requirement for the tape loops and other moving parts can put many musicians off from owning one. But [Japhy Riddle] has built an instrument without these downsides called the Tape Speed Keyboard.

Unlike the Mellotron which used a tape loop for each of its keys, the Tape Speed Keyboard uses only a single cassette tape. As the name implies, it changes the pitch of the sound by modulating the speed of the single tape housed in its own tape deck. The keyboard itself started off life as a Casio MT-35 but since this is a completely analog instrument, it was rewired so each key is connected to a potentiometer whose output voltage is tuned to a specific tape speed. [Japhy] reports that this is similar to tuning an analog piano and the process can be equally temperamental.

With everything electronic working, [Japhy] turned to making this a more acceptable musical instrument. Predictably, turning the motor on and off for each key press came with a bit of delay, causing the sound to come out goofy and muddy. To solve this problem he changed the design to make the tape play continuously rather than start and stop for a key press, and then modified other keys to be on-off switches for sound output. Since cassette tapes have two sides, he can also play either of two sounds in this way.

With the final polish on, the Tape Speed Keyboard is able to produce completely unique compositions that separate it from even the venerable Mellotron. Be sure to check out the video linked below to hear its sound. There have been plenty of other musical projects based around tape decks as well, including this one inspired by the original Mellotron and this tape deck-based guitar effects pedal.

Thanks to [splashbun] for the tip!

Continue reading “The Tape Speed Keyboard”

Open-Source, Flexible E-Reader

Although the most popular e-reader by far is the Kindle, some argue that its primary use isn’t even as an e-reader at all but rather as a storefront for one of the world’s richest companies. For those who want user-focused consumer electronics instead, we’ll often reach for something more untethered, like an off-brand ebook that’s nothing more than an Android tablet with an e-paper display or even a jailbroken Kindle freed from the chains of Amazon. But as our 555 enthusiast community continually points out, even these are overkill for reading books. Enter the ZEReader.

The ZEReader started out as a bachelor’s engineering thesis project by [Anna-Lena Marx], whose goal was an open-source, microcontroller-based e-reader instead of the Linux or Android ones most commonly available. She’s based the firmware around the Zephyr Real-Time Operating System, which is an RTOS geared towards embedded devices. With this as a backbone, it’s trivially easy to implement the e-reader on different microcontrollers as well as use a wide variety of screens. Although the firmware is a work-in-progress, it’s already mature enough to support all of the basics of an e-reader, such as reading .epub files, navigating through the book, and saving progress. It even includes basic HTML parsing.

Continue reading “Open-Source, Flexible E-Reader”

Legally Distinct Space Invaders Display WiFi Info

In the early 00s there was a tiny moment before the widespread adoption of mobile broadband, after the adoption of home WiFi, and yet before the widespread use of encryption. For this brief time a unique practice arose called wardriving — where people would drive around, document, and use these open wireless networks.

Although the pursuit has diminished with the rise of mobile broadband and WPA encryption, there are still a few use cases for the types of hardware a wardriver would have used. [arduinocelentano] recently built a Wi-Fi strength monitor in this style but with a unique theme.

Continue reading “Legally Distinct Space Invaders Display WiFi Info”

Skateboard Wheels Add Capabilities To Plasma Cutter

Although firmly entrenched in the cultural zeitgeist now, the skateboard wasn’t always a staple of popular culture. It had a pretty rocky start as surfers jankily attached roller skating hardware to wooden planks searching for wave-riding experiences on land. From those rough beginnings it still took decades of innovation until Rodney Mullen adapted the ollie for flatground skating before the sport really took off. Skateboard hardware is quite elegant now too; the way leaning turns the board due to the shape of the trucks is immediately intuitive for even the most beginner riders, and bearing technology is so high-quality and inexpensive now that skateboard hardware is a go-to parts bin grab for plenty of other projects like this plasma cutter modification.

[The Fabrication Series]’s plasma cutter is mounted to a CNC machine, allowing for many complex cuts in much less time than it would take to do by hand. But cutting tubes is a more complicated endeavor for a machine like this. This is where the skateboard hardware comes in: by fabricating two custom pivoting arms each with two skateboard wheels that push down on a tube to hold it in place, the CNC machine can roll the tube along the table in a precise way as the plasma cutter works through it.

Of course, cutting a moving part is a little more complicated for the CNC machine than cutting a fixed piece of sheet metal, so [The Fabrication Series] walks us through a few ways of cutting pipe for various purposes, including miters and notches. The first step is to build a model of the pipes, in this case using Onshape, and then converting the 3D model of the pipes into a sheet metal model that the CNC machine can use. It does take a few cuts on the machine to fine-tune the cuts, but in no time the machine is effortlessly cutting complex shapes into the pipe. Don’t have a plasma cutter at all? You can always build your own from scratch.

Thanks to [JohnU] and [paulvdh] for the tip!

Continue reading “Skateboard Wheels Add Capabilities To Plasma Cutter”

Commodore 64 On New FPGA

When it comes to getting retro hardware running again, there are many approaches. On one hand, the easiest path could be to emulate the hardware on something modern, using nothing but software to bring it back to life. On the other, many prefer to restore the original hardware itself and make sure everything is exactly as it was when it was new. A middle way exists, though, thanks to the widespread adoption of FPGAs which allow for programmable hardware emulation and [Jo] has come up with a new implementation of the Commodore 64 by taking this path.

The project is called the VIC64-T9K and is meant as a proof-of-concept that can run the Commodore 64’s VIC-II video chip alongside a 6502 CPU on the inexpensive Tang Nano 9k FPGA. Taking inspiration from the C64_MiSTer project, another FPGA implementation of the C64 based on the DE10-Nano FPGA, it doesn’t implement everything an original Commodore system would have had, but it does provide most of the core hardware needed to run a system. The project supports HDMI video with a custom kernel, and [Jo] has used it to get a few demos running including sprite animations.

Built with a mix of Verilog and VHDL, it was designed as a learning tool for [Jo] to experiment with the retro hardware, and also brings a more affordable FPGA board to the table for Commodore enthusiasts. If you’re in the market for something with more of the original look and feel of the Commodore 64, though, this project uses the original case and keyboard while still using an FPGA recreation for the core of the computer.

Experience Other Planets With The Gravity Simulator

As Earthlings, most of us don’t spend a lot of extra time thinking about the gravity on our home planet. Instead, we go about our days only occasionally dropping things or tripping over furniture but largely attending to other matters of more consequence. When humans visit other worlds, though, there’s a lot more consideration of the gravity and its effects on how humans live and many different ways of training for going to places like the Moon or Mars. This gravity simulator, for example, lets anyone experience what it would be like to balance an object anywhere with different gravity from Earth’s.

The simulator itself largely consists of a row of about 60 NeoPixels, spread out in a line along a length of lightweight PVC pipe. They’re controlled by an Arduino Nano which has a built-in inertial measurement unit, allowing it to sense the angle the pipe is being held at as well as making determinations about its movement. A set of LEDs on the NeoPixel strip is illuminated, which simulates a ball being balanced on this pipe, and motion one way or the other will allow the ball to travel back and forth along its length. With the Earth gravity setting this is fairly intuitive but when the gravity simulation is turned up for heavier planets or turned down for lighter ones the experience changes dramatically. Most of the video explains the math behind determining the effects of a rolling ball in each of these environments, which is worth taking a look at on its own.

While the device obviously can’t change the mass or the force of gravity by pressing a button, it’s a unique way to experience and feel what a small part of existence on another world might be like. With enough budget available there are certainly other ways of providing training for other amounts of gravity like parabolic flights or buoyancy tanks, although one of the other more affordable ways of doing this for laypeople is this low-gravity acrobatic device.

Continue reading “Experience Other Planets With The Gravity Simulator”

Game Boy Camera In Wedding Photo Booth

For those of a certain age the first digital camera many of us experienced was the Game Boy Camera, an add-on for the original Game Boy console. Although it only took pictures with the limited 4-tone monochrome graphics of this system, its capability of being able to take a picture, edit it, create drawings, and then print them out on the Game Boy Printer was revolutionary for the time. Of course the people who grew up with this hardware are about the age to be getting married now (or well beyond), so [Sebastian] capitalized on the nostalgia for it with this wedding photo booth that takes pictures with the Game Boy Camera.

The photo booth features the eponymous Game Boy Camera front-and-center, with a pair of large buttons to allow the wedding guests to start the photography process. The system takes video and then isolates a few still images from it to be printed with the Game Boy Printer. The original Game Boy hardware, as well as a Flask-based web app with a GUI, is all controlled with a Raspberry Pi 4. There’s also a piece of Game Boy hardware called the GB Interceptor that sits between the Game Boy console and the camera cartridge itself which allows the Pi to capture the video feed directly.

The booth doesn’t stop with Game Boy hardware, though. There’s also a modern mirrorless digital camera set up in the booth alongside the Game Boy Camera which allows for higher resolution, full color images to be taken as well. This is also controlled with the same hardware and provides a more modern photo booth experience next to the nostalgic one provided by the Game Boy. There have been many projects which attempt to modernize this hardware, though, like this build which adds color to the original monochrome photos or this one which adds Wi-Fi capability.

Continue reading “Game Boy Camera In Wedding Photo Booth”