Retro-Soviet Computer Brings The 80s Back

[Alex Zaikin] made a modern reproduction of an early-80s Soviet hobbyist home computer. Although the design was open, indeed it was published in “Radio” magazine, the project was a mammoth undertaking involving around 200 microchips, so not many “Mikro-80” computers were actually made.

[Alex] wanted to simplify the project and reduce the parts count. These days, 200 microchips’ worth of logic can easily fit inside an FPGA, and [Alex] wrangled the chip count down to seven. Moreover, he made it even easier to build your own retro minicomputer by building a modular platform: Retrobyte.

With the Retrobyte providing all of the essential infrastructure — SD card, tape recorder I/O, VGA outputs, and more — and the FPGA providing the brains, all that was left was to design a period keyboard and 3D print a nice enclosure. Project complete! Time for a few rounds of ASCII Tetris to celebrate.

We’ve covered a number of retro computer projects. We just have a soft spot for them, is all. If you don’t know what all the fuss is about, you could start out with a kit build to get your feet wet. Before long, you’ll be emulating ever obscurer computers of yore in custom logic. And when you do, be sure to drop us a line!

Take Your PCBs From Good To Great: Toner Transfer

dscf8697
One-offs that I never would have gotten professionally made, but that were infinitely handy during development

A lot of us make circuit boards at home. I find it a useful skill to have in my bag of tricks for intermediate steps along the way to a finished project, even if the finished version is going to be sent out to a PCB fab. When I need a breakout board that meshes with other development tools, for instance, there’s nothing like being able to whip something up that plugs right in. Doing it quickly, and getting on with the rest of the project instead of placing an order and waiting for delivery, helps keep me in the flow.

Toner transfer is by far the fastest way to make a circuit board at home — simply print the circuit out on a laser printer, iron it onto the copper, and etch. When it works, it’s awesome. When it doesn’t, it can be a hair-pulling exercise in figuring out which of myriad factors are misaligned.

For a long time now, I’ve been using a method that’s very reliable and repeatable. Recently, I’ve been tweaking a bit on the performance of the system, and I thought I’d share what I’ve got. At the moment, I’m able to very reliably produce boards with 6 mil (0.15 mm) traces and 8 mil (0.20 mm) spacing. With a little care in post-production, 4 mil / 6 mil is entirely plausible.

Continue reading “Take Your PCBs From Good To Great: Toner Transfer”

“Nixie” Tubes Sound Good

A tube is a tube is a tube. If one side emits electrons, another collects them, and a further terminal can block them, you just know that someone’s going to use it as an amplifier. And so when [Asa] had a bunch of odd Russian Numitron tubes on hand, an amplifier was pretty much a foregone conclusion.

A Numitron is a “low-voltage Nixie”, or more correctly a single-digit VFD in a Nixiesque form factor. So you could quibble that there’s nothing new here. But if you dig into the PDF writeup, you’ll find that the tubes have been very nicely characterised, situating this project halfway between dirty hack and quality lab work.

It’s been a while since we’ve run a VFD-based amplifier project, but it’s by no means the first time. Indeed, we seem to run one every couple years. For instance, here is a writeup from 2010, and the next in 2013. Extrapolating forward, you’re going to have to wait until 2019 before you see this topic again.

Giant-Scale Physical Pong

At first, we thought we were having deja vu, but then we saw this video embedded below. [Thijs Eerens] is a creative technologist (dare we say, a “hacker”?) who builds giant-scale games for a living. For the Lowlands festival in the Netherlands, he contributed to the build of a huge Pong game that looks as big as a cinema screen.

The paddles appear to be controlled by pulling ropes, and the “ball” is driven around on a system of wires and stepper motors. Code running in the background tracks the player paddles, drives the ball, and keeps score. From the video, there seem to be sound effects involved. It looks like a lot of fun.

Continue reading “Giant-Scale Physical Pong”

Nexmon Turns Nexus 5 (and RPi3!) Into WiFi Toolkit

Back in the day, when wardriving was still useful (read: before WPA2 was widespread), we used to wander around with a Zaurus in our pocket running Kismet. Today, every cellphone has WiFi and a significantly more powerful processor inside. But alas, the firmware is locked down.

mrmcd16-7748-deu-nexmon_-_make_wi-fi_hacking_on_smartphones_great_again_sdmp4-shot0005_thumbnailEnter the NexMon project. If you’ve got a Nexus 5 phone with the Broadcom BCM4339 WiFi chipset, you’ve now got a monitor-mode, packet-injecting workhorse in your pocket, and it looks a lot less creepy than that old Zaurus. But more to the point, NexMon is open. If you’d like to get inside what it took to reverse-engineer a hole into the phone’s WiFi, or make your own patches, here’s a great starting place.

But wait, there’s more! The recently released Raspberry Pi 3 has a similar Broadcom WiFi chipset, and has been given the same treatment, turning your RPi 3 into a wireless-sniffing powerhouse. How many Raspberry Pi “hacks” actually hack the Raspberry Pi? Well, here’s one.

We first learned of this project from a talk given at the MetaRhein-Main Chaos Days conference which took place last weekend. The NexMon talk (in German, but with slides in English) is just one of the many talks, all of which are available online.

The NexMon project is a standout, however. Not only do they reverse the WiFi firmware in the Nexus 5, but they show you how, and then apply the same methods to the RPi3. Kudos times three to [Matthias Schulz], [Daniel Wegemer], and [Matthias Hollick]!

Ducklings Raised By Remote

We’re not sure that it’s absolutely necessary to raise ducks using a remote-control animatronic duck decoy, but people have stranger hobbies.

This YouTube video (embedded below) from [Imaginative Guy] chronicles an impressive feat of RC animatronics, sparing no effort to make the RC duck “parents” realistic. There’s a ton of detail in the videos, from the machining of small necessary bits to the liberal application of hot glue where necessary. Continue reading “Ducklings Raised By Remote”

Run A RepRap On An ESP8266

What can’t the little $5 WiFi module do? Now that [lhartmann] has got an ESP8266 controlling the motors of a 3D printer, that’s one more item to check off the list.

What’s coolest about this project is the way that [lhartmann] does it. The tiny ESP8266 has nowhere near the required number of GPIO pins, the primary SPI is connected to the onboard flash memory, and the secondary SPI is poorly documented and almost nobody uses it. So, [lhartmann] chose to use the I2S outputs.

I2S is most often an audio protocol, so this might at first seem like a strange choice. Although I2S sounds like I2C, it’s really essentially an SPI protocol with a fourth wire that alternates to designate the right or left channel. It’s actually just perfect for sending 16×2 bits of data at high data rates.

[lhartmann] takes these 32 bits and feeds them into four shift registers, producing 32 outputs from just the four I2S data lines. That’s more than enough signals to run the stepper motors. And since it updates at 192 kHz sample rate, it’s plenty fast enough to drive them.

The other side benefit of this technique is that it can work on single-board computers with just a little bit of software. Programming very complicated stepper movements then becomes just a matter of generating the right “audio” file and playing it out. [lhartmann] demonstrated this earlier with an Orange Pi. That’s pretty cool, too.

The code for turning the ESP8266 and a short handful of 74HC595s into a 3D printer controller are up on GitHub, so go check it out.

Thanks [CNLohr] for the tip!