Experimenting With Vibratory Wind Generators

We’ve all got a pretty good mental image of the traditional wind-powered generator: essentially a big propeller on a stick. Some might also be familiar with vertical wind turbines, which can operate no matter which way the wind is blowing. In either case, they use some form of rotating structure to harness the wind’s energy.

But as demonstrated by [Robert Murray-Smith], it’s possible to generate electrical power from wind without any moving parts. With simple components, he shows how you can build a device capable of harnessing the wind with nothing more than vibrations. Alright, so we suppose that means the parts are technically moving, but you get the idea.

In the video after the break, [Robert] shows two different devices that operate under the same basic principle. For the first, he cuts the cone out of a standard speaker and glues a flat stick to the voice coil. As the stick moves back and forth in the wind, the coil inside of the magnet’s field and produces a measurable voltage. This proves the idea has merit and can be thrown together easily, but isn’t terribly elegant.

For the revised version, he glues a coil to a small piece of neoprene rubber, which in turn is glued to a slat taken from a Venetian blind. On the opposite side of the coil, he glues a magnet. When the blind slat starts vibrating in the wind, the oscillation of the magnet relative to the coil is enough to produce a current. It’s tiny, of course. But if you had hundreds or even thousands of these electric “blades of grass”, you could potentially build up quite a bit of energy.

If this all sounds a bit too theoretical for your tastes, you can always 3D print yourself a more traditional wind turbine. We’ve even seen them in vertical form, if you want to get fancy.

Continue reading “Experimenting With Vibratory Wind Generators”

The Challenges Of Monitoring Water Streams And Surviving Mother Nature

Small waterways give life in the form of drinking and irrigation water, but can also be very destructive when flooding occurs. In the US, monitoring of these waterways is done by mainly by the USGS, with accurate but expensive monitoring stations. This means that there is a limit to how many monitoring stations can be deployed. In an effort to come up with a more cost-efficient monitoring solution, [Rohan Menon] and [Ian Vernooy] created Aquametric, a simple water level, temperature and conductivity measuring station.

The device is built around a Particle Electron that features a STM32 microcontroller and a 3G modem. An automotive ultrasonic sensors measures water level, a thermistor measures temperature and a pair of parallel aluminum plates are used to measure conductivity. All the data from the prototype is output to a live dashboard. The biggest challenges for the system came with field deployment.

The great outdoors can be rather merciless with our ideas and electronic devices. [Rohan] and [Ian] did some tests with LoRa, but quickly found that the terrain severely limited the effective range. Power was another challenge, first testing with a solar panel and lithium battery. This proved unreliable especially at temperatures near freezing, so they decided to use 18 AA batteries instead and optimized power usage.

The mounting system is still an ongoing challenge. A metal pole driven into the riverbed at a wider part ended up bent (probably from ice sheets) and covered in debris to the point that it affected water level readings. They then moved to a narrower and shallower section in the hopes of avoiding debris, but the rocky bottom prevented them from effectively driving in a pole. So the mounted the pole on a steel plate which was then packet with rock to keep it in place. This too failed when it tipped over from rising water levels, submerging the entire sensor unit. Surprisingly it survived with only a little moisture getting inside.

For the 2020 Hackaday Prize, Field Ready and Conservation X Labs have issued challenges that need require some careful consideration and testing to build things that can survive the real world. So go forth and hack!

Your Own Open Source ASIC: SkyWater-PDK Plans First 130 Nm Wafer In 2020

You might have caught Maya Posch’s article about the first open-source ASIC tools from Google and SkyWater Technology. It envisions increased access to make custom chips — Application Specific Integrated Circuits — designed using open-source tools, and made real through existing chip fabrication facilities. My first thought? How much does it cost to tape out? That is, how do I take the design on my screen and get actual parts in my hands? I asked Google’s Tim Ansel to explain some more about the project’s goals and how I was going to get my parts.

The goals are pretty straightforward. Tim and his collaborators would like to see hardware open up in the same way software has. The model where teams of people build on each other’s work either in direct collaboration or indirectly has led to many very powerful pieces of software. Tim’s had some success getting people interested in FPGA development and helped produce open tools for doing so. Custom ASICs are the next logical step.

Continue reading “Your Own Open Source ASIC: SkyWater-PDK Plans First 130 Nm Wafer In 2020”

Aggressive Indoor Flying Thanks To SteamVR

With lockdown regulations sweeping the globe, many have found themselves spending altogether too much time inside with not a lot to do. [Peter Hall] is one such individual, with a penchant for flying quadcopters. With the great outdoors all but denied, he instead endeavoured to find a way to make flying inside a more exciting experience. We’d say he’s succeeded.

The setup involves using a SteamVR virtual reality tracker to monitor the position of a quadcopter inside a room. This data is then passed back to the quadcopter at a high rate, giving the autopilot fast, accurate data upon which to execute manoeuvres. PyOpenVR is used to do the motion tracking, and in combination with MAVProxy, sends the information over MAVLink back to the copter’s ArduPilot.

While such a setup could be used to simply stop the copter crashing into things, [Peter] doesn’t like to do things by half measures. Instead, he took full advantage of the capabilities of the system, enabling the copter to fly aggressively in an incredibly small space.

It’s an impressive setup, and one that we’re sure could have further applications for those exploring the use of drones indoors. We’ve seen MAVLink used for nefarious purposes, too. Video after the break.

Continue reading “Aggressive Indoor Flying Thanks To SteamVR”

The Segway Is Dead, Long Live The Segway

Before it was officially unveiled in December 2001, the hype surrounding the Segway Human Transporter was incredible. But it wasn’t because people were excited to get their hands on the product, they just wanted to know what the thing was. Cryptic claims from inventor Dean Kamen that “Ginger” would revolutionize transportation and urban planning lead to wild speculation. When somebody says their new creation will make existing automobiles look like horse-drawn carriages in comparison, it’s hard not to get excited.

Dean Kamen unveils the Segway

There were some pretty outlandish theories. Some believed that Kamen, a brilliant engineer and inventor by all accounts, had stumbled upon some kind of anti-gravity technology. The kids thought they would be zipping around on their own Back to the Future hover boards by Christmas, while Mom and Dad were wondering what the down payment on a floating minivan might be. Others thought the big secret was the discovery of teleportation, and that we were only a few years out from being able to “beam” ourselves around like Captain Kirk.

Even in hindsight, you really can’t blame them. Kamen had the sort of swagger and media presence that we today associate with Elon Musk. There was a general feeling that this charismatic maverick was about to do what the “Big Guys” couldn’t. Or even more tantalizing, what they wouldn’t do. After all, a technology which made the automobile obsolete would change the world. The very idea threatened a number of very big players, not least of which the incredibly powerful petroleum industry.

Of course, we all know what Dean Kamen actually showed off to the world that fateful day nearly 20 years ago. The two-wheeled scooter was admittedly an impressive piece of hardware, but it was hardly a threat to Detroit automakers. Even the horses were largely unconcerned, as you could buy an actual pony for less than what the Segway cost.

Now, with the announcement that Segway will stop production on their eponymous personal transporter in July, we can confidently say that history will look back on it as one of the most over-hyped pieces of technology ever created. But that’s not to say Kamen’s unique vehicle didn’t have an impact. Continue reading “The Segway Is Dead, Long Live The Segway”

Quadcopter With Stereo Vision

Flying a quadcopter or other drone can be pretty exciting, especially when using the video signal to do the flying. It’s almost like a real-life video game or flight simulator in a way, except the aircraft is physically real. To bring this experience even closer to the reality of flying, [Kevin] implemented stereo vision on his quadcopter which also adds an impressive amount of functionality to his drone.

While he doesn’t use this particular setup for drone racing or virtual reality, there are some other interesting things that [Kevin] is able to do with it. The cameras, both ESP32 camera modules, can make use of their combined stereo vision capability to determine distances to objects. By leveraging cloud computing services from Amazon to offload some of the processing demands, the quadcopter is able to recognize faces and keep the drone flying at a fixed distance from that face without needing power-hungry computing onboard.

There are a lot of other abilities that this drone unlocks by offloading its resource-hungry tasks to the cloud. It can be flown by using a smartphone or tablet, and has its own web client where its user can observe the facial recognition being performed. Presumably it wouldn’t be too difficult to use this drone for other tasks where having stereoscopic vision is a requirement.

Thanks to [Ilya Mikhelson], a professor at Northwestern University, for this tip about a student’s project.

Towards A 3D-Printed Neutrino Detector

Additive manufacturing techniques like fused deposition modeling, aka 3D printing, are often used for rapid prototyping. Another advantage is that it can create shapes that are too complex to be made with traditional manufacturing like CNC milling. Now, 3D printing has even found its way into particle physics as an international collaboration led by a group from CERN is developing a new plastic scintillator production technique that involves additive manufacturing.

A scintillator is a fluorescent material that can be used for particle detection through the flashes of light created by ionizing radiation. Plastic scintillators can be made by adding luminophores to a transparent polymer such as polystyrene and are usually produced by conventional techniques like injection molding.

Continue reading “Towards A 3D-Printed Neutrino Detector”