Teensy Hat Controls Games

[Carson] didn’t know how to use an accelerometer until he wired one up to a Teensy and put it all in a hat. The result is a joystick that will probably cause you neck problems if you play video games for very long. You can see a video of how the device came to be and how it works, below.

We liked the approach of building up the circuit and testing it before integrating it with the hat. He used a small breadboard with half the Teensy pins hanging off. That seems to work, although we’d be worried about something shorting or floating pins causing issues. Of course, if you drove the disconnected pins as outputs or inputs with pullups that might not be a big deal.

Continue reading “Teensy Hat Controls Games”

Beverage Holder Of Science

The folks at [K&J Magnetics] have access to precise magnetometers, a wealth of knowledge from years of experience but when it comes to playing around with a silly project like a magnetic koozie, they go right to trial and error rather than simulations and calculations. Granted, this is the opposite of mission-critical.

Once the experimentation was over, they got down to explaining their results so we can learn more than just how to hold our beer on the side of a toolbox. They describe three factors related to magnetic holding in clear terms that are the meat and bones of this experiment. The first is that anything which comes between the magnet and surface should be thin. The second factor is that it should be grippy, not slippy. The final element is to account for the leverage of the beverage being suspended. Say that three times fast.

Magnets are so cool for anything from helping visualize gas atoms, machinists’ tools, and circumventing firearm security features.

Continue reading “Beverage Holder Of Science”

SPINES Design Makes For Modular Energy Harvesting

The SPINES (Self-Powered IoT Node for Environmental Sensing) Mote is a wireless IoT environmental sensor, but don’t let the neatly packed single PCB fool you into thinking it’s not hackable. [Macro Yau] specifically designed SPINES to be highly modular in order to make designing an energy harvesting sensor node an easier task. The way [Macro] sees it, there are two big hurdles to development: one is the energy harvesting itself, and the other is the software required to manage the use of every precious joule of that harvested energy.

[Macro] designed the single board SPINES Mote in a way that the energy harvesting portion can be used independently, and easily integrated into other designs. In addition, an Arduino library is being developed to make it easy for the power management to be done behind the scenes, allowing a developer to concentrate on the application itself. A solar-powered wireless sensor node is one thing, but helping people get their ideas up and running faster in the process is wonderful to see.

Françoise Barré-Sinoussi: Virus Hunter

It was early 1983 and Françoise Barré-Sinoussi of the prestigious Pasteur Institute in Paris was busy at the centrifuge trying to detect the presence of a retrovirus. The sample in the centrifuge came from an AIDS patient, though the disease wasn’t called AIDS yet.

Barré-Sinoussi and Montagnier in 1983
Barré-Sinoussi and Montagnier in 1983, Image source: Le Globserver

Just two years earlier in the US, a cluster of young men had been reported as suffering from unusual infections and forms of cancer normally experienced by the very old or by people using drugs designed to suppress the immune system. More cases were reported and US Centers for Disease Control and Prevention (CDC) formed a task force to monitor the unusual outbreak. In December, the first scientific article about the outbreak was published in the New England Journal of Medicine.

By May 1983, researchers Barré-Sinoussi and Luc Montagnier of the Pasteur Institute had isolated HIV, the virus which causes AIDS, and reported it in the journal Science. Both received the Nobel prize in 2008 for this work and the Nobel prize citation stated:

Never before have science and medicine been so quick to discover, identify the origin and provide treatment for a new disease entity.

It’s only fitting then that we take a closer look at one of these modern detectives of science, Françoise Barré-Sinoussi, and what led to her discovery.

Continue reading “Françoise Barré-Sinoussi: Virus Hunter”

Emotional Hazards That Lurk Far From The Uncanny Valley

A web search for “Uncanny Valley” will retrieve a lot of information about that discomfort we feel when an artificial creation is eerily lifelike. The syndrome tells us a lot about both human psychology and design challenges ahead. What about the opposite, when machines are clearly machines? Are we all clear? It turns out the answer is “No” as [Christine Sunu] explained at a Hackaday Los Angeles meetup. (Video also embedded below.)

When we build a robot, we know what’s inside the enclosure. But people who don’t know tend to extrapolate too much based only on the simple behavior they could see. As [Christine] says, people “anthropomorphize at the drop of the hat” projecting emotions onto machines and feeling emotions in return. This happens even when machines are deliberately designed to be utilitarian. iRobot was surprised how many Roomba owners gave their robot vacuum names and treated them as family members. A similar eruption of human empathy occurred with Boston Dynamics video footage demonstrating their robot staying upright despite being pushed around.

In the case of a Roomba, this kind of emotional power is relatively harmless. In the case of robots doing dangerous work in place of human beings, such attachment may hinder robots from doing the job they were designed for. And even more worrisome, the fact there’s a power means there’s a potential for abuse. To illustrate one such potential, [Christine] brought up the Amazon Echo. The cylindrical puck is clearly a machine and serves as a point-of-sale terminal, yet people have started treating Alexa as their trusted home advisor. If Amazon should start monetizing this trust, would users realize what’s happening? Would they care?

Continue reading “Emotional Hazards That Lurk Far From The Uncanny Valley”

Let’s Talk About Elon Musk’s Submarine

When word first broke that Elon Musk was designing a kid-sized submarine to help rescue the children stuck in Thailand’s Tham Luang cave, it seemed like a logical thing for Hackaday to cover. An eccentric builder of rockets and rocket-launched electric sports cars, pushing his engineering teams and not inconsiderable financial resources into action to save children? All of that talk about Elon being a real life Tony Stark was about to turn from meme into reality; if the gambit paid off, the world might have it’s first true superhero.

With human lives in the balance, and success of the rescue attempt far from assured (regardless of Elon’s involvement), we didn’t feel like playing arm-chair engineer at the time. Everyone here at Hackaday is thankful that due to the heroics of the rescuers, including one who paid the ultimate price, all thirteen lives were saved.

Many said it couldn’t be done, others said even saving half of the children would have been a miracle. But Elon’s submarine, designed and built at a breakneck pace and brought to Thailand while some of the children were still awaiting rescue, laid unused. It wasn’t Elon’s advanced technology that made the rescue possible, it was the tenacity of the human spirit.

Now, with the rescue complete and the children well on their way to returning to their families, one is left wondering about Elon’s submarine. Could it have worked?

Continue reading “Let’s Talk About Elon Musk’s Submarine”

Freak Out Your Smartphone With Ultrasound

There’s a school of thought that says complexity has an inversely proportional relation to reliability. In other words, the smarter you try to make something, the more likely it is to end up failing for a dumb reason. As a totally random example: you’re trying to write up a post for a popular hacking blog, all the while yelling repeatedly for your Echo Dot to turn on the fan sitting three feet away from you. It’s plugged into a WeMo Smart Plug, so you can’t even reach over and turn it on manually. You just keep repeating the same thing over and over in the sweltering July heat, hoping your virtual assistant eventually gets the hint. You know, something like that. That exact scenario definitely has never happened to anyone in the employ of this website.

Black Hat 2017 Presentation

So it should come as no surprise that the more sensors we pack into devices, the more potential avenues of failure we open up. [Julio Della Flora] writes in to tell us of some interesting experiments he’s been performing with the MEMS gyroscope in his Xiaomi MI5S Plus smartphone. He’s found that with a function generator and a standard speaker, he’s able to induce false sensor readings.

Now it should be said, [Julio] is not claiming to be the first person to discover that ultrasonic sound can confuse MEMS gyroscopes and accelerometers. At Black Hat 2017, a talk was given in which a “Sonic Gun” was used to do things like knock over self-balancing robots using the same principle. The researchers were also able to confuse a DJI Phantom drone, showing that the technique has the potential to be weaponized in the real-world.

It’s interesting to see more validation that not only is this a continuing issue with consumer devices, but that it doesn’t necessarily take expensive or exotic hardware to execute. Yet another reason to take ultrasound seriously as a potential threat.

Continue reading “Freak Out Your Smartphone With Ultrasound”