The First Microcomputer: The Q1

Quiz time, what was the first commercially available microcomputer? The Altair 8800? Something obscure like the SCELBI? The Mark-8 kit? According to [The Byte Attic], it was actually the Q1, based on the Intel 8008 processor. The first Q1 microcomputer was delivered in December of 1972, making it the first, as far as he can tell. Later revisions used the Z80 processor, which is the model pictured above that [The Byte Attic] has in his possession. It’s a beautiful little machine, with a striking orange plasma display.

The irony is that this machine is almost entirely forgotten about. The original unit may have looked more like a typewriter, pictured here. If you have any first hand knowledge, or especially software, documentation, or surviving hardware bits, make sure to check in to add to the knowledge pool about this amazing little machine.

It’s an important milestone, and the development of the Q1 may have been a direct cause of Intel developing the more powerful 8080 microprocessor. It seems that Daniel Alroy’s work on this machine literally kicked off the microcomputer revolution, and it’s been missing from our computer lore for too many years. We’re very hopeful to see more of this story come together, and the history of the Q1 fully recovered.

And if retro hardware is your jam, we’ve got you covered, including among others, the parallel story about the first microprocessor.

Continue reading “The First Microcomputer: The Q1”

laser cut acrylic coaster with rgb leds inside

Your Mug Will Like This Glowy Coaster

[Charlyn] wanted to highlight their friends beautiful mug collection, so the Glowy Coaster was born.

The coaster is made up of six layers of laser cut acrylic. The top and bottom layer are cut out of clear acrylic, providing a flat surface for the coaster. A top pattern layer made of pearl acrylic has a thin piece of vellum put underneath it to provide diffusion for the LED strip sandwiched inside. The middle layers are made of peach acrylic and have their centers hollowed out to provide room for the electronics inside. The top pearl acrylic layer gives the coaster, as [Charlyn] writes, a “subtle touch of elegance”. The coaster itself is screwed together by an M3 screw at each point of the hexagon that feed through to heat-set inserts.

inside of glowy coaster with electronics exposed

The electronics consist of a short NeoPixel strip, cut to include 12 LEDs pointed in towards the center of the coaster. The LEDs are driven by a Trinket M0 microcontroller with a LiPo “backpack” to provide power, attachment points for the exposed power switch and recharging capability to the 110 mAh 3.7 V battery. The code is a slightly modified NeoPixel “rainbow” wheel loop (source available as a gist). The design files are available through Thingiverse.

Creations like these highlight how much care and work goes into a project with minimal beauty, where decisions, like the opacity and thickness of the acrylic or countersinking the M3 screws, can have huge consequences for the overall aesthetic. [Charlyn] has an attention to detail that brings an extra touch of professionalism and polish to the project.

Coasters are a favorite for laser cutting and we’ve covered many different types, including
coaster bots, coaster engravers and even a color changing, drink sensing coasters.

Continue reading “Your Mug Will Like This Glowy Coaster”

Infinite Axis Printing On The Ender 3

It’s taken years to perfect them, but desktop 3D printers that uses a conveyor belt instead of a traditional build plate to provide a theoretically infinite build volume are now finally on the market. Unfortunately, they command a considerable premium. Even the offering from Creality, a company known best for their budget printers, costs $1,000 USD.

But if you’re willing to put in the effort, [Adam Fasnacht] thinks he might have the solution. His open source modification for the Ender 3 Pro turns the affordable printer into a angular workhorse. We wouldn’t necessarily call it cheap; in addition to the printer’s base price of $240 you’ll need to source $200 to $300 of components, plus the cost of the plastic to print out the 24 components necessary to complete the conversion. But it’s still pretty competitive with what’s on the market. Continue reading “Infinite Axis Printing On The Ender 3”

Japan Wants To Decarbonize With The Help Of Ammonia

With climate change concerns front of mind, the world is desperate to get to net-zero carbon output as soon as possible. While direct electrification is becoming popular for regular passenger cars, it’s not yet practical for more energy-intensive applications like aircraft or intercontinental shipping. Thus, the hunt has been on for cleaner replacements for conventional fossil fuels.

Hydrogen is the most commonly cited, desirable for the fact that it burns very cleanly. Its only main combustion product is water, though its combustion can generate some nitrogen oxides when burned with air. However, hydrogen is yet to catch on en-masse, due largely to issues around transport, storage, and production.

This could all change, however, with the help of one garden-variety chemical: ammonia. Ammonia is now coming to the fore as an alternative solution. It’s often been cited as a potential way to store and transport hydrogen in an alternative chemical form, since its formula consists of one nitrogen atom and three hydrogen atoms.However, more recently, ammonia is being considered as a fuel in its own right.

Let’s take a look at how this common cleaning product could be part of a new energy revolution.

Continue reading “Japan Wants To Decarbonize With The Help Of Ammonia”

£D printed parts with glossy toner transfer images on

Add Full-Color Images To Your 3D Prints With Toner Transfer

Toner transfer is a commonly-used technique for applying text and images to flat surfaces such as PCBs, but anybody who has considered using the same method on 3D prints will have realized that the heat from the iron would be a problem. [Coverton] has a solution that literally turns the concept on its head, by 3D printing directly onto the transparency sheet.

instrument panel design with toner transfer markings
The fine detail is great for intuitive front-panel designs

The method is remarkably straightforward, and could represent a game-changer for hobbyists trying to achieve professional-looking full-color images on their prints.

First, the mirrored image is printed onto a piece of transparency film with a laser printer. Then, once the 3D printer has laid down the first layer of the object, you align the transparency over it and tape it down so it doesn’t move around. The plastic that’s been deposited already is then removed, and a little water is placed on the center of the bed. Using a paper towel, the transparency gets smoothed out until the bubbles are pushed off to the edges.

Another few pieces of tape hold the transparency down on all corners, and the hotend height is adjusted to take into account the transparency thickness. From there, the print can continue on as normal. When finished, the image should be fused with the plastic. If it’s hard to visualize, check out the video after the break for a step-by-step guide.

There are, of course, some caveats. Aligning the transfer and the print looks a little fiddly at the moment, the transparency material used (obviously) has to be rated for use in laser printers, and it only works on flat surfaces. But on the other hand, there will be some readers who already have everything they need to try this out at home right now — and we’d love to see the results!

We’ve covered some other ways to get color and images onto 3D prints in the past, such as this hydrographic technique or by using an inkjet printhead, but [Coverton]’s idea looks much simpler than either of those.  If you’re interested in toner transfer for less heat-sensitive materials, then check out this guide from a few years back, or see what other Hackaday readers have been doing on wood or brass.

Continue reading “Add Full-Color Images To Your 3D Prints With Toner Transfer”

When 3D Printing Gears, It Pays To Use The Right Resin

There are plenty of resins advertised as being suitable for functional applications and parts, but which is best and for what purpose?

According to [Jan Mrázek], if one is printing gears, then they are definitely not all the same. He recently got fantastic results with Siraya Tech Fast Mecha, a composite resin that contains a filler to improve its properties, and he has plenty of pictures and data to share.

[Jan] has identified some key features that are important for functional parts like gears. Dimensional accuracy is important, there should be low surface friction on mating surfaces, and the printed objects should be durable. Of course, nothing beats a good real-world test. [Jan] puts the resin to work with his favorite method: printing out a 1:85 compound planetary gearbox, and testing it to failure.

The results? The composite resin performed admirably, and somewhat to his surprise, the teeth on the little gears showed no signs of wear. We recommend checking out the results on his page. [Jan] has used the same process to test many different materials, and it’s always updated with all tests he has done to date.

Whether it’s working out all that can go wrong, or making flexible build plates before they were cool, We really admire [Jan Mrázek]’s commitment to getting the most out of 3D printing with resin.

Reverse Engineering Hack Chat With Matthew Alt

Join us on Wednesday, September 28 at noon Pacific for the Reverse Engineering Hack Chat with Matthew Alt!

Our world is full of mysteries, from the nature of time to how exactly magnets work. There are some things that we just have to accept that no matter how hard we look, we’ll never get a complete answer, especially in the natural world. The constructed world is another thing, though. It doesn’t seem fair that only a relatively few people have the inside scoop on the workings of everyday things, like network routers, game consoles, and even the vehicles we drive. Of course, the companies that make these things have a right to profit from their intellectual property, but we as consumers also have a right to be curious about how these things work and to understand what the software running on these devices is doing on our behalf.

join-hack-chatLuckily, what can be engineered can be reverse engineered, if you have the right tools and the skills to use them. It can be a challenge, but it’s one Matthew Alt has taken on plenty of times. We’ve seen him deep-dive into JTAG, look at serial wire debugging, and recently even try some glitching attacks. In fact, he even taught a HackadayU course on reverse engineering with Ghidra. And now he’ll drop by the Hack Chat to talk all about reverse engineering. Join us with your questions, your exploits, and your ideas on how to go where no hacker has gone before.

Our Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, September 28 at 12:00 PM Pacific time. If time zones have you tied up, we have a handy time zone converter.