A Sneak Peek At Anechoic Chamber Testing

[Mathieu Stephan] has something new in the works, and while he isn’t ready to take the wraps off of it yet, he was kind enough to document his experience putting the mysterious new gadget through its paces inside an anechoic chamber. Considering the majority of us will never get inside of one of these rooms, much less have the opportunity to test our own hardware in one, he figured it was the least he could do.

If you’re not familiar with an anechoic chamber, don’t feel bad. It’s not exactly the sort of thing you’ll have at the local makerspace. Put simply it’s a room designed to not only to remove echos on the inside, but also be completely isolated from the outside. But we aren’t just talking about sound deadening, the principle can also be adapted to work for electromagnetic waves. So not only is in the inside of the anechoic chamber audibly silent, it can also be radio silent.

This is important if you want to test the performance of things like antennas, as it allows you to remove outside interference. As [Mathieu] explains, both the receiver and transmitter can be placed in the chamber and connected to a vector network analyzer (VNA). The device is able to quantify how much energy is being transferred between the two devices, but the results will only be accurate if that’s the only thing the VNA sees on its input port.

[Mathieu] can’t reveal images of the hardware or the results of the analysis because that would give too much away at this point, but he does provide the cleverly edited video after the break as well as some generic information on antenna analysis and the type of results one receives from this sort of testing. Our very own [Jenny List] has a bit more information on the subject if you’d like to continue to live vicariously through the accounts of others. For the rest of us, we’ll just have to settle for some chicken wire and a wooden crate.

Continue reading “A Sneak Peek At Anechoic Chamber Testing”

Choosing Cell Modems: The Drama Queen Of Hardware Design

So you went to a tradeshow and heard about this cool new idea called the Internet Of Things; now it’s time to build an IoT product of your own. You know that to be IoT, your Widget D’lux® has to have a network connection but which to choose?

You could use WiFi or Bluetooth but that would be gauche. Maybe LoRaWAN? All the cool kids are using LoRa for medium or long range wireless these days, but that still requires a base station and Widget D’lux® will be a worldwide phenomenon. Or at least a phenomenon past your bedroom walls. And you know how much user’s hate setting things up. So a cell modem it is! But what do you have to do to legally include one in your product? Well that’s a little complicated.

Continue reading “Choosing Cell Modems: The Drama Queen Of Hardware Design”

Junkbox Constant Current Source Helps With Kelvin Sensing

Is it ironic when a YouTube channel named “The Current Source” needs to build a current source? Or is that not ironic and actually just coincidental?

Regardless of linguistic considerations, [Derek], proprietor of the aforementioned channel has made and disassembled a few current sources in his day. Most of those jobs were for one-off precision measurements or even to drive a string of LEDs in what he describes as a pair of migraine-inducing glasses. Thankfully, The junk box current source presented in the video below is more in service of the former than the latter, as his goal is to measure very small resistances in semiconductors using Kelvin clips.

The current source uses a 24-volt switch-mode power supply and the popular LM317 adjustable voltage regulator. The ‘317 can be configured in a constant current mode by connecting the chip’s adjustment pin to the output through a series resistance. A multiturn pot provides current adjustment, although the logarithmic taper is not exactly optimal for the application. We spotted a pair of what appear to be optoisolators in the build too, but there’s no schematic and no discussion of what they do. [Derek] puts the final product to use for a Kelvin measurement of a 0.47-Ω 1% resistor at the end of the video.

We’re glad to see [Derek] in action; you may recall his earlier video about measuring his own radiation with a Geiger counter after treatment for thyroid cancer. Here’s hoping that’s behind him now.

Continue reading “Junkbox Constant Current Source Helps With Kelvin Sensing”

These Are The 100 Finalists In The Hackaday Prize

The Hackaday Prize is the greatest hardware competition on the planet. It’s the Academy Awards of Open Hardware, and over the last few years we’ve been doing it, we’ve seen literally tens of projects that have gone from an idea to a prototype to a finished project to a saleable product. It’s the greatest success story the Open Hardware community has.

Over the last eight months, we’ve been deep in the weeds with this year’s Hackaday Prize. It’s five challenges, with twenty winners per challenge. That’s one hundred projects that will make it to the semifinals in the hopes of becoming the greatest project this year. Only one will make it, but truthfully they all deserve it. These are the one hundred finalists in the Hackaday Prize, all truly awesome projects but only one will walk home with the Grand Prize. Continue reading “These Are The 100 Finalists In The Hackaday Prize”

Oliver Heaviside: Rags To Recognition, To Madness

Like any complex topic, electromagnetic theory has its own vocabulary. When speaking about dielectrics we may refer to their permittivity, and discussions on magnetic circuits might find terms like reluctance and inductance bandied about. At a more practical level, a ham radio operator might discuss the impedance of the coaxial cable used to send signals to an antenna that will then be bounced off the ionosphere for long-range communications.

It’s everyday stuff to most of us, but none of this vocabulary would exist if it hadn’t been for Oliver Heaviside, the brilliant but challenging self-taught British electrical engineer and researcher. He coined all these terms and many more in his life-long quest to understand the mysteries of the electromagnetic world, and gave us much of the theoretical basis for telecommunications.

Continue reading “Oliver Heaviside: Rags To Recognition, To Madness”

Studying Airplane Radio Reflections With SDR

A property of radio waves is that they tend to reflect off things. Metal surfaces in particular act as good reflectors, and by studying how these reflections work, it’s possible to achieve all manner of interesting feats. [destevez] decided to have some fun with reflections from local air traffic, and was kind enough to share the results.

The project centers around receiving 2.3 GHz signals from a local ham beacon that have been reflected by planes taking off from the Madrid-Barajas airport. The beacon was installed by a local ham, and transmits a CW idenfication and tone at 2 W of power.

In order to try and receive reflections from nearby aircraft, [destevez] put together a simple but ingenious setup.

ADS-B data was plotted on a map and correlated with the received reflections.

A LimeSDR radio was used, connected to a 9 dB planar 2.4 GHz WiFi antenna. This was an intentional choice, as it has a wide radiation pattern which is useful for receiving reflections from odd angles. A car was positioned between the antenna and the beacon to avoid the direct signal overpowering reflected signals from aircraft.

Data was recorded, and then compared with ADS-B data on aircraft position and velocity, allowing recorded reflections to be matched to the flight paths of individual flights after the fact. It’s a great example of smart radio sleuthing using SDR and how to process such data. If you’re thirsty for more, check out this project to receive Russian weather sat images with an SDR.

[Thanks to Adrian for the tip!]

This Year’s Nobel Prizes Are Straight Out Of Science Fiction

In the 1966 science fiction movie Fantastic Voyage, medical personnel are shrunken to the size of microbes to enter a scientist’s body to perform brain surgery. Due to the work of this year’s winners of the Nobel Prize in Physics, laser tools now do work at this scale.

Arthur Ashkin won for his development of optical tweezers that use a laser to grip and manipulate objects as small a molecule. And Gérard Mourou and Donna Strickland won for coming up with a way to produce ultra-short laser pulses at a high-intensity, used now for performing millions of corrective laser eye surgeries every year.

Here is a look at these inventions, their inventors, and the applications which made them important enough to win a Nobel.

Continue reading “This Year’s Nobel Prizes Are Straight Out Of Science Fiction”