How To Fail At Laser Cutting

Laser cutters are CNC power tools, which means an operator uploads a job digitally and then pushes START to let the machine do all the work while they lie back in a hammock sipping a margarita, occasionally leaping out in a panic because the sound coming from the machine changed slightly.

Like other power tools, laser cutters are built around doing one thing very well, but they require an operator’s full attention and support. The operator needs to handle all the other things that go on before, during, and after the job. It’s not too hard to get adequate results, but to get truly professional and repeatable ones takes work and experience and an attention to detail.

People often focus on success stories, but learning from failures is much more educational. In the spirit of exploring that idea, here are my favorite ways to fail at laser cutting and engraving. Not all of these are my own personal experience, but they are all someone’s personal experience.

Continue reading “How To Fail At Laser Cutting”

Kerbal Space Program For The Apple II

[Vince Weaver] tried to use his time machine to jump a few years in the future to get a less buggy version of Kerbal Space Program, but as usual with time travel, nothing went right and he ended up heading to 1987. Finding himself in an alternate timeline where KSP had been released for the Apple II, he brought back a copy.

Well, that’s the narrative proposed by [Vince Weaver] on his YouTube channel. The real story, and hack, being that he wrote a version of KSP for the Apple II in Applesoft Basic. He has used the language for the ridiculous before. You can build a rocket, select a pilot, launch, and if you’re lucky (or skilled), reach orbit.

We loaded up his disk image on an Apple II emulator and gave it a try. We managed to murde—lose a few pilots, but that was about it.  It was hard not to get distracted by the graphics and remember to point the rocket the right direction. Either way, it was a neat bit of fun in retro computing. Video after the break.

Continue reading “Kerbal Space Program For The Apple II”

Path To Craftsmanship: The Art Of Throwing It Away

Some hackers build sharp, mildly toxic nests of parts, components, and thrifty finds around themselves. These nests, while not comfortable, are certainly comforting. They allow the hacker’s psyche to inhabit a locale as chaotic as their minds. Within these walls of stuff and clutter, stunning hacks pour out amid a small cloud of cursing. This article is not for them.

http://www.computerhistory.org/atchm/an-analog-life-remembering-jim-williams/
Very few of us can actually function in a workplace such like that of the venerable Jim Williams (photo from linked article). Thanks to the commenters for mentioning him in the previous article.

For the rest of us, clutter is a Zen destroying, seemingly unconquerable, monster that taunts our poor discipline and organizational skill from the dark corner of our minds. However, there is an easy solution that is oft overlooked. Somewhat obviously, most organization problems can be solved by simply not having things to organize.

It’s taken me a very long time to realize the source of my clutter woes. My first tactic was to blame myself for my inability to keep up with the mess. A more superior human would certainly be able to use their effortless discipline to keep a space organized. However, the clutter was a symptom of a problem completely separate from my actual ability to keep a space clean.

Continue reading “Path To Craftsmanship: The Art Of Throwing It Away”

Fight That Tesla Envy With A Tablet Dash For Your Car

[Aykut Çelik] uses some strong words to describe how he feels about his VW Polo’s current radio set-up. Words like, “useless,” are bandied about. What is a modern man supposed to do with a car that doesn’t have built-in navigation or Bluetooth connectivity with phones? Listen to the radio? There are actual (mostly) self driving cars on the road now. No, [Aykut] moves forward, not backwards.

To fix this horrendous shortcoming in his car’s feature package, he set out to install a tablet in the dash. His blog write-up undersells the amount of work that went into the project, but the video after the break rectifies this misunderstanding. He begins by covering the back of a face-down Samsung tablet with a large sheet of plastic film. Next he lays a sheet of fiberglass over the tablet and paints it with epoxy until it has satisfactorily clung to the back of the casing. Afterwards comes quite a bit of work fitting an off-the-shelf panel display mount to the non-standard hardware. He eventually takes it to a local shop which does the final fitting on the contraption.

The electronics are a hodgepodge of needed parts: An amplifier, to replace the one that was attached to the useless husk of the prior radio set; a CAN shield for an Arduino, so that he could still use the steering wheel buttons; and a Bluetooth shield, so that the Arduino could talk to the tablet. Quite a bit of hacking happened, and the resulting software is on GitHub.

The final assembly went together well. While it’s no Tesla console. It does get over the air updates whenever he feels like writing them. [Aykut] moves forward with the times.

Continue reading “Fight That Tesla Envy With A Tablet Dash For Your Car”

Motorized Music Box Cranks Out Stairway To Heaven

[Bokononestly] found a lil’ music box that plays Stairway to Heaven and decided those were just the kinds of dulcet tones he’d like to wake up to every morning. To each his own; I once woke up to Blind Melon’s “No Rain” every day for about six months. [Bokononestly] is still in the middle of this alarm clock project right now. One day soon, it will use a *duino to keep track of the music box’s revolutions and limit the alarm sound to one cycle of the melody.

stairway-musicbox-alarm-clock[Bokononestly] decided to drive the crank of the music box with a geared DC motor from an electric screwdriver. After making some nice engineering drawings of the dimensions of both and mocking them up in CAD, he designed and printed a base plate to mount them on. A pair of custom pulleys mounted to the motor shaft and the crank arm transfer motion using the exact right rubber band for the job. You can’t discount the need for a big bag ‘o rubber bands.
In order to count the revolutions, he put a wire in the path of the metal music box crank and used the body of the box as a switch. Check out the build video after the break and watch him prove it with the continuity function of a multimeter. A clever function that should at some point be substituted out for a leaf switch.

We’ve covered a lot of cool clock builds over the years, including one or two that run Linux. And say what you will about Stairway; it’s better than waking up to repeated slaps in the face.

Continue reading “Motorized Music Box Cranks Out Stairway To Heaven”

Hackaday Prize Entries: Inventing New Logic Families

One of the favorite pastimes of electronics hobbyists is clock making. Clocks are a simple enough concept with a well-defined goal, but it’s the implementation that matters. If you want to build a clock powered only by tubes and mains voltage, that’s a great skill tester. A relay-based timepiece is equally cool, and everyone should build a Nixie tube clock once in their lives.

For [Ted]’s Hackaday Prize entry, he’s building a clock. Usually, this would be little cause for celebration, but this is not like any clock you’ve ever seen. [Ted] is building this clock using only diodes, and he’s inventing new logic families to do it.

Using diodes as logic elements has been around since the first computers, but these computers had a few transistors thrown in. While it is possible to make AND and OR gates using only diodes, a universal logic gate – NANDs and NORs – are impossible. For the computers of the 1950s, that means tubes or transistors and DTL logic.

For the past few years, [Ted] has been working on a diode-only logic family, and it appears he’s solved the problem. The new logic family includes a NOR gate constructed using only diodes, resistors, and inductors. The key design feature of these gates is a single diode to switch an RF power supply on and off. It relies on an undocumented property of the diodes, but it does work.

Although [Ted] can create a NOR gate without transistors — a feat never before documented in the history of electronics — that doesn’t mean this is a useful alternative to transistor logic. The fan-out of the gates is terrible, the clock uses about 60 Watts, and the gates require an AC power supply. While it is theoretically possible to build a computer out of these gates, it’s doubtful if anyone has the patience to do so. It’s more of a curiosity, but it is a demonstration of one of the most mind-bending projects we’ve ever seen.

You can check out a video of the diode clock below.

Continue reading “Hackaday Prize Entries: Inventing New Logic Families”

The Foghorn Requiem

Foghorns have been a part of maritime history since the 19th century, providing much needed safety during inclement weather to mariners out at sea. Over time, their relevance has slowly reduced, with advanced navigational aids taking over the task of keeping ships and sailors safe.

The sounds of the foghorns are slowly dying out. Artists [Joshua Portway] and [Lise Autogena] put together the Foghorn Requiem, a project which culminated on June 22nd 2013, with an armada of more than 50 ships gathered on the North Sea to perform an ambitious musical score, marking the disappearance of the sound of the foghorn from the UK’s coastal landscape.

ship_layoutUp close, a foghorn is loud enough to knock you off your shoes. But over a distance, its sound takes on a soulful, melancholy quality, shaped by the terrain that it passes over. The artists tried capturing this quality of the foghorn, with help from composer [Orlando Gough] who created a special score for the performance. It brought together three Brass Bands – the Felling Band, the Westoe Band and the NASUWT Riverside Band, almost 50 ships at sea and the Souter Lighthouse Foghorn to play the score.

Each of the more than 50 vessels were outfitted with a custom built, tunable foghorn, actuated by a controller box consisting of a TI Launchpad with GPS, RTC, Xbee radio and relay modules. Because of the great distances between the ships and the audience on land, the devices needed to compensate for their relative position and adjust the time that they play the foghorn to offset for travel time of the sound. Each controller had its specific score saved on on-board storage, with all controllers synchronized to a common real time clock.

Marine radios were used to communicate with all the ships, informing them when to turn on the controllers, about 10 minutes from the start of the performance. Each device then used its GPS position to calculate its distance from the pre-programmed audience location, and computed how many seconds ahead it had to play its horn for the sound to be heard in time on the shore. The controllers then waited for a pre-programmed time to start playing their individual foghorn notes. The cool thing about the idea was that no communication was required – it was all based on time. Check out the video of the making of the Foghorn Requiem after the break, and here’s a link to the audio track of the final performance.

This is a slightly different approach compared to the Super Massive Musical Instrument that we posted about earlier.

Continue reading “The Foghorn Requiem”