Hacklet 26 – Arduino Projects

Arduino is one of those boards that has become synonymous with hacking and making. Since its introduction in 2005, over 700,000 official Arduino boards have been sold, along with untold millions of compatible and clone boards. Hackers and makers around the world have found the Arduino platform a cheap and simple way to get their projects off the ground. This weeks Hacket focuses on some of the best Arduino based projects we’ve found on Hackday.io!

drawingbot[Niazangels] gets the ball – or ballpoint pen – rolling with Roboartist, a robot which creates line drawings. Roboartist is more than just a plotter though. [Niazangels] created a custom PC program which creates line drawings from images captured by a webcam. The line drawings are converted to coordinates, and sent to an Arduino, which controls all the motors that move the pen. [Niazangels] went with Dynamixel closed loop servo motors rather than the stepper motors we often see in 3D printers.

tape[Peter Edwards] is preserving the past with Tapuino, the $20 C64 Tape Emulator. Plenty of programs for the Commodore 64, 128, and compatibles were only distributed on tape. Those tapes are slowly degrading, though the classic Commodore herdware is still going strong. Tapuino preserves those tapes by using an Arduino nano to play the files from an SD card into the original Datasette interface. [Peter] also plans to add recording functionality to the Tapuino, which will make it the total package for preserving  your data. All that’s missing is that satisfying clunk when pressing the mechanical Play button!

infinity

[Dushyant Ahuja] knows what time it is, thanks to his Infinity Mirror Clock. This clock tells time with the help of some WS2812B RGB LED. [Dushyant] debugged the clock with a regular Arduino, but when it came time to finish the project, he used an ATmega328 to create an Arduino compatible board from scratch. Programming is easy with an on-board Bluetooth module. [Dushyant] plans to add a TFT lcd which will show weather and other information when those power-hungry LEDs are switched off.

alarm2[IngGaro] built an entire home alarm system with his project Arduino anti-theft alarm shield. [IngGaro] needed an alarm system for his home. That’s a lot to ask of a standard ATmega328p powered Arduino Uno. However, the extra I/O lines available on an Arduino Mega2560 were just what the doctor ordered. [IngGaro] performed some amazing point-to-point perfboard wiring to produce a custom shield that looks and works great! The alarm can interface with just about any sensor, and can be controlled via the internet. You can even disarm the system through an RFID keycard.

Want MORE Arduino in your life? Check out our curated Arduino List!

That’s about all the millis()  we have for this weeks Hacklet. As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!

AutoLeveller - PCB Milling Probe

Mill Warped PCB Blanks On An Uneven Bed

Milling a PCB at home is a great way to save some time and money if you are making one-off circuit boards. There is a downside though, it’s a little tough. Sure, just export your Eagle design to CNC-Machine-understandable g-code and fire up your mill…. well, it’s not that easy.

The copper on a PCB blank can be anywhere from about 0.001 to 0.006 inches thick. When milling a board the ideal situation is to mill just deep enough to get through the copper but not cut too deep into the fiberglass backer board. Cutting too deep can weaken the board, break a bit, or in an extreme case, cut through the entire board.

Shallow cuts can result in another problem, inconsistent cut depth over the surface of the board. Check out the left photo above. The traces on the left side of the board appears to have just faded away. This happened because the circuit board was not flat. The side where the traces are missing from is lower than the other so the tool bit is not able to reach that part of the board. Since an ideal depth of cut is about 0.010 inches, even a very small amount of waviness or out of flatness can cause a serious problem in the milling process. If you have a hard time picturing what 0.010 inches is, think the thickness of two pieces of paper, it’s not a lot. There are two main contributors to the flatness problem; the PCB board and/or the machine’s bed. If the bed is not flat, the PCB won’t be. Even if the bed is flat, the PCB may be warped or bent.

PCB fabrication enthusiast [daedelus] had this exact problem, and in true hacker fashion, decided to do something about it. He created a software program called AutoLeveller that takes a g-code file and adds a probing section to the beginning before the milling operation. When the modified g-code file is run on the CNC Machine, it first probes the surface of the PCB in a grid pattern and maps the flatness variation of the PCB’s surface. Then, when running the program, it adjusts the height of the tool bit on the fly so that the actual depth of cut is consistent over the entire board, regardless of how flat or not it is. The result is a clean and usable PCB on the first try.

There is one catch: the Machine Control Software has to be set up to accept a probe. This is easy to do if communicating to the CNC Machine via a computers parallel port. An input pin on the parallel port is pulled high with a resistor and connected electrically to the PCB board. The tool spindle is grounded with a clip lead. When the tool touches the board, the input pin is pulled low and the Machine Control Software records the tool height for that specific XY position.

Continue reading “Mill Warped PCB Blanks On An Uneven Bed”

Making MicroView Wordy

Despite the MicroView shipping a ton of units, we haven’t seen many projects using this tiny Arduino and OLED display in a project. Never fear, because embedded systems engineer, podcaster, and Hackaday Prize judge [Elecia White] is here with a wearable build for this very small, very cool device.

The size and shape of the MicroView just cried out to be made into a ring, and for that, [Elicia] is using air-drying bendy polymer clay. To attach the clay to the MicroView, [Elecia] put some female headers in a breadboard, and molded the clay over them into a ring shape. It works, and although [Elecia] didn’t do anything too tricky with the headers and clay, there are some interesting things you could do running wires through the clay.

What does this ring do? It’s a Magic 8 Ball, a game of Pong controlled by an accelerometer, a word-of-the-day thing (with definitions), all stuffed into a brass silicon, OLED, and clay knuckle. Video below.

If you’re wondering, Turbillion (n). A whirl; a vortex.

Continue reading “Making MicroView Wordy”

Altair Online

Online Altair 8800 Clone Lets You Play Zork

[Citponys] wanted to share their Altair 8800 clone with the world, and what better way to do so than by hooking it up to the Internet? This hack was pulled off by using a Linux computer which receives a Telnet connection and redirects it to a serial port. This serial port is connected to the Altair clone. In order to connect the serial port to the Internet using TCP, the ser2sock program was used. People can interact with the Altair on the webpage, where there is also a live camera feed showing the Altair’s Blinkenlights.

This is an ongoing project for [Citponys]. Zork 1-3 and Ladder are now available for play. You can interact with other people in the current session; play nice, or it’ll end up a Mad Libs version of ‘Twitch Plays Pokemon’.  Most recently, [Citponys] updated the webpage with a HTML5-embedded terminal emulator. If you want to quit the current session displayed, enter “quit” and you will be redirected to the main menu where you can choose another game. [Citponys] has links to game walkthroughs on the top of the page. We have a soft spot for classic computers and games, especially the Altair. Take a trip down memory lane and play some Zork at the fork where the past meets the present!

[via Reddit]

RaspPi Photo Frame

Raspberry Pi Powered Super Digital Photo Frame

HaD reader [Greg] just finished an LCD picture frame project he’s been working on for a while. This is no ordinary photo display. His brother came up with the idea of having a device to display photos that could be changed remotely. [Greg] gave it some thought and came up with a plan; use a Raspi as the brains, connect to the internet via WiFi and display photos stored in a specific Google Drive folder. Any authorized user can upload photos remotely to the frame so the frame-owner has a constant stream of new photos to view.

Of course, using an off-the-shelf picture frame may have been too easy. Instead [Greg] decided to start with an old computer monitor and wrap it in a wooden frame so it looks good. Mounted to the back of the LCD is a Raspberry Pi with a USB WiFi dongle. The monitor runs at 14 VDC and luckily has an external power supply. Since the Pi runs at 5 V, a buck converter taps into the LCD’s input power and outputs a Pi-happy 5 volts.

This project doesn’t stop with displaying photos! The user can also switch to a weather view. The weather image displayed is generated from weather data pulled from the internet in the exact same manor used by folks who make stand-alone weather displays out of old Kindles. Oh yeah, switching between photos and weather is done by wireless remote! On the frame unit itself there is only one button, but it has 3 functions: A quick press turns the screen off, a short hold syncs with Google Drive and a long hold powers off the RaspPi.

If you’d like to make your own frame, [Greg] has graciously made all his scripts available for download…. not to mention his very detailed build log.

Quadcopter Beer Delivery System

One of the major design challenges when it comes to building an efficient quadcopter is weight. The idea here is that the more you can trim down the weight of the frame, motors, and circuitry, the longer the batteries will last. Or, in [dalbyman]’s case, the more beer it can carry.

[Dalbyman]’s housemate built the actual quadcopter, but then [dalbyman] got a little inebriated and decided that, while the quadcopter was exciting on its own, it would be even better with this modification. The actual device is a modified Pringles can with two servo motors on the bottom with arms that hold the beer. A parachute is attached to the beverage can and the assembly is loaded in. With a simple press of a button, the servos turn the arms and the beer falls out of the tube. Hopefully the parachute deploys and gently (and accurately) floats the beer to the thirsty person on the ground!

This project is a simple step that goes a long way towards a beer delivery system even Amazon could be proud of, and also shows off the capabilities of quadcopters in general. Perhaps the next step could be to automate the beer delivery system!

 

3D Windows Manager for Oculus

Using The Oculus Rift As A Multi-Monitor Replacement

[Jason] has been playing around with the Oculus Rift lately and came up with a pretty cool software demonstration. It’s probably been done before in some way shape or form, but we love the idea anyway and he’s actually released the program so you can play with it too!

It’s basically a 3D Windows Manager, aptly called 3DWM — though he’s thinking of changing the name to something a bit cooler, maybe the WorkSphere or something.

As he shows in the following video demonstration, the software allows you to set up multiple desktops and windows on your virtual sphere created by the Oculus — essentially creating a virtual multi-monitor setup. There’s a few obvious cons to this setup which makes it a bit unpractical at the moment. Like the inability to see your keyboard (though this shouldn’t really be a problem), the inability to see people around you… and of course the hardware and it’s lack of proper resolution. But besides that, it’s still pretty awesome!

In the future development he hopes to add Kinect 2 and Leap Motion controller integration to help make it even more user intuitive — maybe more Minority Report style.

Continue reading “Using The Oculus Rift As A Multi-Monitor Replacement”