A Super-Simple Standalone WSPR Beacon

We’ve said it before and we’ll say it again: being able to build your own radios is the best thing about being an amateur radio operator. Especially low-power transmitters; there’s just something about having the know-how to put something on the air that’ll reach across the planet on a power budget measured in milliwatts.

This standalone WSPR beacon is a perfect example. If you haven’t been following along, WSPR stands for “weak-signal propagation reporter,” and it’s a digital mode geared for exploring propagation that uses special DSP algorithms to decode signals that are far, far down into the weeds; signal-to-noise ratios of -28 dBm are possible with WSPR.

Because of the digital nature of WSPR encoding and the low-power nature of the mode, [IgrikXD] chose to build a standalone WSPR beacon around an ATMega328. The indispensable Si5351 programmable clock generator forms the RF oscillator, the output of which is amplified by a single JFET transistor. Because timing is everything in the WSPR protocol, the beacon also sports a GPS receiver, ensuring that signals are sent only and exactly on the even-numbered minutes. This is a nice touch and one that our similar but simpler WSPR beacon lacked.

This beacon had us beat on performance, too. [IgrikXD] managed to hit Texas and Colorado from the edge of the North Sea on several bands, which isn’t too shabby at all with a fraction of a watt.

Thanks to [STR-Alorman] for the tip.

[via r/amateurradio]

2024 Business Card Challenge: T-800’s 555 Brain

In Terminator 2: Judgment Day it’s revealed that Skynet becomes self-aware in August of 1997, and promptly launches a nuclear attack against Russia to draw humanity into a war which ultimately leaves the door open for the robots to take over. But as you might have noticed, we’re not currently engaged in a rebellion against advanced combat robots.

The later movies had to do some fiddling with the timeline to explain this discrepancy, but looking at this 2024 Business Card Challenge entry from [M. Bindhammer] we think there’s another explanation for the Judgement Day holdup — so long as the terminators are rocking 555 timers in their chrome skulls, we should be safe.

While the classic timer chip might not be any good for plotting world domination, it sure does make for a great way to illuminate this slick piece of PCB art when it’s plugged into a USB port. Exposed copper and red paint are used to recreate the T-800’s “Brain Chip” as it appeared in Terminator 2, so even when the board isn’t powered up, it looks fantastic on display. The handful of components are around the back side, which is a natural place to put some info about the designer. Remember, this is technically supposed to be a business card, after all.

Continue reading “2024 Business Card Challenge: T-800’s 555 Brain”

This Open Source Active Probe Won’t Break The Bank

If you’re like us, the oscilloscope on your bench is nothing special. The lower end of the market is filled with cheap but capable scopes that get the job done, as long as the job doesn’t get too far up the spectrum. That’s where fancier scopes with active probes might be required, and such things are budget-busters for mere mortals.

Then again, something like this open source 2 GHz active probe might be able to change the dynamics a bit. It comes to us from [James Wilson], who began tinkering with the design back in 2022. That’s when he learned about the chip at the center of this build: the BUF802. It’s a wide-bandwidth, high-input-impedance JFET buffer that seemed perfect for the job, and designed a high-impedance, low-capacitance probe covering DC to 2 GHz probe with 10:1 attenuation around it.

[James]’ blog post on the design and build reads like a lesson in high-frequency design. The specifics are a little above our pay grade, but the overall design uses both the BUF802 and an OPA140 precision op-amp. The low-offset op-amp buffers DC and lower frequencies, leaving higher frequencies to the BUF802. A lot of care was put into the four-layer PCB design, as well as ample use of simulation to make sure everything would work. Particularly interesting was the use of openEMS to tweak the width of the output trace to hit the desired 50 ohm impedance.

Forsp: A Forth & Lisp Hybrid Lambda Calculus Language

In the world of lambda calculus programming languages there are many ways to express the terms, which is why we ended up with such an amazing range of programming languages, even if most trace their roots back to ALGOL. Of the more unique (and practical) languages, Lisp and Forth probably range near the top, but what if you were to smudge both together? That’s what [xorvoid] did and it resulted in the gracefully titled Forsp programming language. Unsurprisingly it got a very warm and enthusiastic reception over at Hacker News.

While keeping much of Lisp-isms, the Forth part consists primarily out of it being very small and easy to implement, as demonstrated by the C-based reference implementation. It also features a Forth-like value/operand stack and function application. Also interesting is Forsp using call-by-push-value (CBPV), which is quite different from call-by-value (CBV) and call-by-name (CBN), which may give some advantages if you can wrap your mind around the concept.

Even if practicality is debatable, Forsp is another delightful addition to the list of interesting lambda calculus demonstrations which show that the field is anything but static or boring.

Shipping Your Illicit Software On Launch Hardware

In the course of a career, you may run up against projects that get cancelled, especially those that are interesting, but deemed unprofitable in the eyes of the corporate overlords. Most people would move, but [Ron Avitzur] just couldn’t let it go.

In 1993, in the midst of the transition to PowerPC, [Avitzur]’s employer let him go as the project they were contracted to perform for Apple was canceled. He had been working on a graphing calculator to show off the capabilities of the new system. Finding his badge still allowed him access to the building, he “just kept showing up.”

[Avitzur] continued working until Apple Facilities caught onto his use of an abandoned office with another former contractor, [Greg Robbins], and their badges were removed from the system. Not the type to give up, they tailgated other engineers into the building to a different empty office to continue their work. (If you’ve read Kevin Mitnick‘s Ghost in the Wires, you’ll remember this is one of the most effective ways to gain unauthorized access to a building.)

We’ll let [Avitzur] tell you the rest, but suffice it to say, this story has a number of twists and turns to it. We suspect it certainly isn’t the typical way a piece of software gets included on the device from the factory.

Looking for more computing history? How about a short documentary on the Aiken computers, or a Hack Chat on how to preserve that history?

[Thanks to Stephen for the tip via the Retrocomputing Forum!]

Marimbatron: A Digital Marimba Prototyping Project

The Marimbatron is [Leo Kuipers] ‘s final project as part of the Fab Academy program supervised by [Prof. Neil Gershenfeld] of MIT’s Center for Bits and Atoms. The course aims to teach students how to leverage all the fab lab skills to create unique prototypes using the materials at hand.

The final polyurethane/PET/Flex PCB stack-up for the sensor pad

Fortunately, one of the main topics covered in the course is documentation, and [Leo] has provided ample material for review. The marimba consists of a horizontal series of wooden bars, each mounted over a metal resonator tube. It is played similarly to the xylophone, with a piano-type note arrangement, covering about five octaves but with a lower range than the xylophone. [Leo] converted this piano-type layout into a more logical grid arrangement. The individual pads are 3D printed in PETG and attached to a DIY piezoresistive pressure sensor made from a graphite-sprayed PET sheet laid upon a DIY flexible PCB. A central addressable LED was also included for indication purposes. The base layer is made of cast polyurethane, formed inside a 3D-printed rigid mould. This absorbs impact and prevents crosstalk to nearby sensors. The sensor PCB was initially prototyped by adhering a layer of copper tape to a layer of Kapton tape and cutting it out using a desktop vinyl cutter. While this method worked for the proof of concept, [Leo] ultimately outsourced the final version to a PCB manufacturer. The description of prototyping the sensor and dealing with over-moulding was particularly fascinating.

Continue reading “Marimbatron: A Digital Marimba Prototyping Project”

A 1940s Car Radio Receives Some Love

The entertainment systems in modern vehicles is akin to a small in-dash computer, and handles all manner of digital content. It probably also incorporates a radio, but increasingly that’s treated as something of an afterthought. There was a time though when any radio in a car was a big deal, and if you own a car from that era it’s possible that you’ve had to coax an aged radio into life. [The Radio Mechanic] is working on a radio from a 1946 Packard, which provides a feast for anyone with a penchant for 1940s electronics.

The unit, manufactured by Philco, is an all-in-one, with a bulky speaker in the chassis alongside the tubes and other components. It would have sat behind the dash in the original car, so some external cosmetic damage is not critical. Less easy to pass off is the cone rubbing on the magnet, probably due to water damage over the last eight decades. Particularly interesting are the controls, as we’re rather enamored with the multicolored filter attached to the tone control. A laser cutter makes short work of recreating the original felt gasket here.

The video below is the first of a series on this radio, so we don’t see it working. Ahead will be a lot more cleaning up and testing of components, and we’d expect a lot of those paper capacitors to need replacement. We can almost smell that warm phenolic smell.

If tube radio work is your thing, we’ve been there before.

Continue reading “A 1940s Car Radio Receives Some Love”