Hackaday Podcast 233: Chandrayaan On The Moon, Cyberdecks, Hackerspaces Born At A German Computer Camp

This week, Editor-in-Chief Elliot Williams and Kristina Panos experimented with the old adage that brevity is the soul of wit. That’s right; this week, they’re all Quick Hacks, and that’s to make room for a special series of interviews that Elliot recorded at CCCamp with the pillars of US hackerspace creation. This one’s really special, do have a listen.

We still made room for the news this week: India launched Chandrayaan-3, which combines an orbiter, lander, and rover all in one. Then it’s on to the What’s That Sound results show, and while Kristina did not get it right, she did correctly identify it as being used in Whitney Houston’s “I Wanna Dance With Somebody”, as did one of the guessers who identified it as the cowbell sound from a Roland 808.

Then it’s on to the (quick) hacks, where we alternated for once just to keep things interesting. This week, Elliot is into 3D printing a clay extruder and then printing pottery with that, z-direction conductive tape, and the humble dipole antenna. Kristina is more into cyberdecks for the young and old, a reusable plant monitor, and 3D printing some cool coasters.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Download and savor at your leisure.

Continue reading “Hackaday Podcast 233: Chandrayaan On The Moon, Cyberdecks, Hackerspaces Born At A German Computer Camp”

Privacy And Photography, We Need To Talk

One of the fun aspects of our global community is that there are plenty of events at which we can meet up, hang out, and do cool stuff together. They may be in a Las Vegas convention center, a slightly muddy field in England, or a bar in Berlin, but those of us with a consuming interest in technology and making things have a habit of finding each other. Our events all have their own cultures which make each one slightly different from others.

The German events, for example, seem very political to my eyes — with earnest blue-haired young women seeking to make their mark as activists, while the British ones are a little more laid-back and full of middle-aged engineers seeking the bar. There are some cultural things which go beyond the superficial though and extend into the way the events are run, and it’s one of these which I think it’s time we had a chat about.

Our Community Takes Privacy Seriously

The relevant section about photography in the SHA2017 code of conduct.
The relevant section about photography in the SHA2017 code of conduct.

The hacker community differs from the general public in many ways, one of which is that we tend to have a much greater understanding of privacy in the online age. The Average Joe will happily sign up to the latest social media craze without a care in the world, while we quickly identify it as a huge data slurp in which the end user is the product rather than the customer.

The work of privacy activists in our community in spotting privacy overreaches may pass unnoticed by outsiders, but over the years it’s scored some big wins that benefit everyone. Part of this interest in privacy appears at our events; it’s very much not done to take a photograph of someone at a hacker event without their consent. This will usually be clearly stated in the code of conduct, and thus if taking a picture featuring someone it’s imperative to make damn sure they’re OK with it. Continue reading “Privacy And Photography, We Need To Talk”

Patching Together Logic Gates

The digital world offers many advantages over its analog relatives, the use of boolean logic among them. Some of the functions, like NOT, OR, and AND are fairly straightforward and line up nicely with their linguistic counterparts. Others are more elusive, like XOR and NAND. For those just getting their start in digital logic, this teaching tool allows different logic gates to be wired together with patch cables.

While [David] first thought to use 74-series logic circuits directly, a much more versatile solution was to use configurable custom logic — a feature found in AVR DA-series microcontrollers that allows for the creation of custom logic circuits without the need for external hardware or complex programming. He went with an ATmega4809 which is capable of supporting twelve gates which are depicted graphically on the board, where the patch cables can be connected between inputs and outputs from a set of switches on the left to another set of LEDs on the right. The microcontroller continually polls for connections, applies the correct logic via a lookup table, and lights the appropriate LED.

Even with only twelve gates, the amount of real-world analogs that can be created with this teaching tool are numerous and varied, from simple things like displaying traffic light patterns in the correct order to implementing a binary adder. It’s an excellent way to get started in digital logic or understanding gates, and much simpler than dealing with 74-series chips on a breadboard like many of us might have done, but those logic chips can be powerful tools to have on hand even in the modern world of microcontrollers.

This Week In Security: WinRAR, DNS Disco, And No Silver Bullets

So what does WinRAR, day trading, and Visual Basic have in common? If you guessed “elaborate malware campaign aimed at investment brokers”, then you win the Internet for the day. This work comes from Group-IB, another cybersecurity company with a research team. They were researching a malware known as DarkMe, and found an attack on WinRAR being used in the wild, using malicious ZIP files being spread on a series of web forums for traders.

Among the interesting tidbits of the story, apparently at least one of those forums locked down the users spreading the malicious files, and they promptly broke into the forum’s back-end and unlocked their accounts. The vulnerability itself is interesting, too. A rigged zip file is created with identically named image file and folder containing a script. The user tries to open the image, but because the zip is malformed, the WinRAR function gets confused and opens the script instead.

Based on a user’s story from one of those forums, it appears that the end goal was to break into the brokers’ trading accounts, and funnel money into attacker accounts. The one documented case only lost $2 worth of dogecoin.

There was one more vulnerability found in WinRAR, an issue when processing malicious recovery volumes. This can lead to code execution due to a memory access error. Both issues were fixed with release 6.23, so if you still have a WinRAR install kicking around, make sure it’s up to date! Continue reading “This Week In Security: WinRAR, DNS Disco, And No Silver Bullets”

RPDot: The RP2040 Dev Board Barely Bigger Than The Chip

Is [William Herr]’s RPDot actually the world’s smallest RP2040 dev board? We can’t say for sure, but at 10 mm on a side, we’d say it has a pretty good shot at the record.

Not that it really matters, mind you — the technical feat of building a fully functional dev board that’s only 3 mm longer on each side than the main chip is the kind of stuff we love to see. [William] says he took inspiration from the [SolderParty] RP2040 Stamp, which at one inch (25.4 mm) on a side is gigantic compared to the RPDot. Getting the RP2040 and all the support components, which include an 8MB QSPI Flash chip, a 3V3 LDO, a handful of 0201 passives, and even a pair of pushbuttons, required quite a lot of design tweaking. He started his PCB design as a four-layer board; while six layers would have made things easier, the budget wouldn’t allow such extravagance for a prototype. Still, he somehow managed to stuff everything in the allotted space and send the designs off — only to get back defective boards.

After reordering from a different vendor, the real fun began. Most of the components went on the front side of the board and were reflowed using a hot plate. The RP2040 itself needed to go on the back side, which required gentle hot air reflow so as not to disrupt the other side of the board. The results look pretty good, although those castellated edges look a little worse for the wear. Still, for someone who only ever worked with 0402 components before, it’s pretty impressive.

[William] says he’s going to open-source the designs as well as make some available for sale. We’ll be looking out for those and other developments, but for now, it’s just pretty cool to see such SMD heroics.

Next-Gen Autopilot Puts A Robot At The Controls

While the concept of automotive “autopilots” are still in their infancy, pretty much any aircraft larger than an ultralight will have some mechanism to at least hold a fixed course and altitude. Typically the autopilot system is built into the airplane’s controls, but this new system replaces the pilot themselves in a manner reminiscent of the movie Airplane.

The robot pilot, known as PIBOT, uses both AI and robotics technology to fly the airplane without altering the aircraft. Unlike a normal autopilot system, this one can be fed the aircraft’s manuals in natural language, understand them, and use that information to fly the airplane. That includes operating any of the aircraft’s cockpit controls, not just the control column and pedal assembly. Supposedly, the autopilot can handle everything from takeoff to landing, and operate capably during heavy turbulence.

The Korea Advanced Institute of Science and Technology (KAIST) research team that built the machine hopes that it will pave the way for more advanced autopilot systems, and although this one has only been tested in simulators so far it shows enormous promise, and even has certain capabilities that go far beyond human pilots’ abilities including the ability to remember a much wider variety of charts. The team also hopes to eventually migrate the technology to the land, especially military vehicles, although we’ve seen how challenging that can be already.

Flexure PCB Actuators Made Before Your Very Eyes

When we see something from [Carl Bugeja], we expect to see flexible PCBs and magnets being pushed to do unexpected things. His latest video in which he designs a set of PCB actuators using flexure joints certainly doesn’t fail to please.

His intent is to create a simple actuator in which a magnet is placed over a coil, and moves upward within the confines of he flexure which surrounds it. And rather than try individual designs one after the other he’s created a huge all-in-one test array of different flexure actuators, each having a slightly different design and construction to whichever one is next to it. There are plenty of magnet flips as he tests them, and using this approach he’s quickly able to eliminate the designs which work less well.

To give an idea how these actuators might be best used, he tried them in a few applications. Their lifting force is relatively tiny, but he found them possibly suitable for a haptic feedback device. Of particular interest is that as the structure is a PCB it’s relatively straightforward to run a line to the magnet and turn it into a touch sensor. The idea of an all in one sensor and haptic feedback component is rather appealing, we think.

If you’ve not seen Carl’s work before, we’ve encountered him many times over the years.

Continue reading “Flexure PCB Actuators Made Before Your Very Eyes”