Multitasker Or Many Monotaskers?

In Al Williams’s marvelous rant he points out a number of the problems with speaking to computers. Obvious problems with voice control include things like multiple people talking over each other, discerning commands from background conversations, and so on. Somehow, unlike on the bridge in Star Trek, where the computer seems to understand everyone just fine, Al sometimes can’t even get the darn thing to play his going-to-sleep playlist, which should be well within the device’s capabilities.

In the comments, [rclark] suggests making a single button that plays his playlist, no voice interaction required, and we have to admit that it’s a great solution to this one particular problem. Heck, the “bedtime button” would make fun project in and of itself, and it’s such a limited scope that it could probably only be an weekend’s work for anyone who has touched the internals of their home automation system, like Al certainly has. We love the simplicity of the idea.

But it ignores the biggest potential benefit of a voice control system: that it’s a one-size-fits-all solution for everything. Imagine how many other use cases Al would need to make a single button device for, and how many coin cell batteries he’d be signing himself up to change out over the course of the year. The trade-off is that the general purpose solution tends not to be as robust as a single-tasker like the button, but also that it can potentially simplify the overall system.

I suffer this in my own home. It’s much more a loosely-coupled web of individual hacks than an overall system, and that has pros and cons. Each individual part is easier to maintain and hack on, but the overall system is less coordinated than it could be. If we change the WiFi password on the home automation router, for instance, I’m going to have to individually log into about eight ESP8266s and change their credentials. Yuck!

It’s probably a matter of preference, but I’ll still take the loose, MQTT-based system that I’ve got now over an all-in-one. Like [rclark], I value individual device simplicity and reliability above the overall system’s simplicity, but because our stereo isn’t even hooked up to the network, I can’t play myself to sleep like Al can. Or at least like he can when the voice recognition is working.

The Perfect Pi Pico Portable Computer

[Abe] wanted the perfect portable computer. He has a DevTerm, but it didn’t quite fit his needs. This is Hackaday after all, so he loaded up his favorite CAD software and started designing. The obvious choice here would be a Raspberry Pi. But [Abe] didn’t want to drop in a Linux computer — he was going for something a bit smaller.

An RP2040 Pico would be a perfect fit. Driving a display with the Pico can be eat a lot of resources though. The solution was a PicoVision from Pimoroni. PicoVision uses two RP2040 chips. One drives an HDMI port, while the other is free to run application software. This meant a standard HDMI screen could be used.

The keyboard was a bit harder. After a lot of searching, [Abe] found an IR remote designed for smart TVs. The QWERTY keyboard was the perfect size but didn’t have an interface he could use. He fixed that with an adapter PCB including an I2C GPIO expander chip. A bit of I2C driver software later, and he had a working input keyboard.

Hardware doesn’t do anything without software though. The software running on the handheld is called Slime OS, and the source is available at [Abe’s] GitHub. It’s a launcher, with support for applications written in python. [Abe] has a few basic demos working, but he’s looking for help to get more features up and running.

Although it wasn’t quite what [Abe] was after, our own [Donald Papp] came away fairly impressed when he gave the DevTerm a test drive back in 2022. Something to consider if you’re looking for a Linux handheld and not quite ready to build one yourself.

Continue reading “The Perfect Pi Pico Portable Computer”

Tricked Out Miter Fence Has All The Features

“World’s best” is a mighty ambitious claim, regardless of what you’ve built. But from the look of [Marius Hornberger]’s tricked-out miter fence, it seems like a pretty reasonable claim.

For those who have experienced the torture of using the standard miter fence that comes with machine tools like a table saw, band saw, or belt sander, any change is likely to make a big difference in accuracy. Miter fences are intended to position a workpiece at a precise angle relative to the plane of the cutting tool, with particular attention paid to the 90° and 45° settings, which are critical to creating square and true joints.

[Marius] started his build with a runner for the T-slot in his machine tools, slightly undersized for the width of the slot but with adjustment screws that expand plastic washers to take up the slack. An aluminum plate equipped with a 3D printed sector gear is attached to the runner, and a large knob with a small pinion mates to it. The knob has 120 precisely positioned slots in its underside, which thanks to a spring-loaded detent provide positive stops every 0.5°. A vernier scale also allows fine adjustment between positive stops, giving a final resolution of 0.1°.

Aside from the deliciously clicky goodness of the angle adjustment, [Marius] included a lot of thoughtful touches. We particularly like the cam-action lock for the angle setting, which prevents knocking your fine angle adjustment out of whack. We’re also intrigued by the slide lock, which firmly grips the T-slot and keeps the fence fixed in one place on the machine. As for the accuracy of the tool, guest meteorologist and machining stalwart [Stefan Gotteswinter] gave it a thumbs-up.

[Marius] is a veteran tool tweaker, and we’ve featured some of his projects before. We bet this fence will see some use on his much-modified drill press, and many of the parts for this build were made on his homemade CNC router.

Continue reading “Tricked Out Miter Fence Has All The Features”

Retrotectacular: Ham Radio As It Was

We hear a lot about how ham radio isn’t what it used to be. But what was it like? Well, the ARRL’s film “The Ham’s Wide World” shows a snapshot of the radio hobby in the 1960s, which you can watch below. The narrator is no other than the famous ham [Arthur Godfrey] and also features fellow ham and U.S. Senator [Barry Goldwater]. But the real stars of the show are all the vintage gear: Heathkit, Swan, and a very oddly placed Drake.

The story starts with a QSO between a Mexican grocer and a U.S. teenager. But it quickly turns to a Field Day event. Since the film is from the ARRL, the terminology and explanations make sense. You’ll hear real Morse code and accurate ham lingo.

Continue reading “Retrotectacular: Ham Radio As It Was”

Genetic Algorithm Runs On Atari 800 XL

For the last few years or so, the story in the artificial intelligence that was accepted without question was that all of the big names in the field needed more compute, more resources, more energy, and more money to build better models. But simply throwing money and GPUs at these companies without question led to them getting complacent, and ripe to be upset by an underdog with fractions of the computing resources and funding. Perhaps that should have been more obvious from the start, since people have been building various machine learning algorithms on extremely limited computing platforms like this one built on the Atari 800 XL.

Unlike other models that use memory-intensive applications like gradient descent to train their neural networks, [Jean Michel Sellier] is using a genetic algorithm to work within the confines of the platform. Genetic algorithms evaluate potential solutions by evolving them over many generations and keeping the ones which work best each time. The changes made to the surviving generations before they are put through the next evolution can be made in many ways, but for a limited system like this a quick approach is to make small random changes. [Jean]’s program, written in BASIC, performs 32 generations of evolution to predict the points that will lie on a simple mathematical function.

While it is true that the BASIC program relies on stochastic methods to train, it does work and proves that it’s effective to create certain machine learning models using limited hardware, in this case an 8-bit Atari running BASIC. In previous projects he’s also been able to show how similar computers can be used for other complex mathematical tasks as well. Of course it’s true that an 8-bit machine like this won’t challenge OpenAI or Anthropic anytime soon, but looking for more efficient ways of running complex computation operations is always a more challenging and rewarding problem to solve than buying more computing resources.

Continue reading “Genetic Algorithm Runs On Atari 800 XL”

Schematic of a circuit

Hacking Flux Paths: The Surprising Magnetic Bypass

If you think shorting a transformer’s winding means big sparks and fried wires: think again. In this educational video, titled The Magnetic Bypass, [Sam Ben-Yaakov] flips this assumption. By cleverly tweaking a reluctance-based magnetic circuit, this hack channels flux in a way that breaks the usual rules. Using a simple free leg and a switched winding, the setup ensures that shorting the output doesn’t spike the current. For anyone who is obsessed with magnetic circuits or who just loves unexpected engineering quirks, this one is worth a closer look.

So, what’s going on under the hood? The trick lies in flux redistribution. In a typical transformer, shorting an auxiliary winding invites a surge of current. Here, most of the flux detours through a lower-reluctance path: the magnetic bypass. This reduces flux in the auxiliary leg, leaving voltage and current surprisingly low. [Sam]’s simulations in LTspice back it up: 10 V in yields a modest 6 mV out when shorted. It’s like telling flux where to go, but without complex electronics. It is a potential stepping stone for safer high-voltage applications, thanks to its inherent current-limiting nature.

The original video walks through the theory, circuit equivalences, and LTspice tests. Enjoy!

Continue reading “Hacking Flux Paths: The Surprising Magnetic Bypass”

Reviewing A Very Dodgy BSK-602 Adjustable Power Supply

There’s no shortage of cheap & cheerful power supplies which you can obtain from a range of online retailers, but with no listed certification worth anything on them calling them ‘dodgy’ is more of a compliment. On the [DiodeGoneWild] YouTube channel an adjustable power supply by the model name BSK-602 is tested and torn down to see exactly what less than $5 off sites like Alibaba will get you.

Perhaps unsurprisingly, voltage regulation is very unstable with massive drifting when left to heat up for a few hours, even though it does hit the 3 V to 24 V DC and 3 A output that it’s optimistically rated for. After popping open the adapter, a very basic switching mode power supply is revealed with an abysmal component selection and zero regard for safety or primary and secondary side isolation. With the case open, the thermal camera reveals that the secondary side heats up to well over 150 °C, explaining why the case was deforming and the sticker peeling off after a few hours of testing.

The circuit itself is based around a (possibly legit) UC3843RN 500 kHz current mode PWM controller, with the full schematic explained in the video. Highlights include the lack of inrush protection, no EMI filtering, a terrible & temperature-dependent voltage reference, not to mention poor component selection and implementation. Basically it’s an excellent SMPS if you want to blast EMI, fry connected electronics and conceivably burn down your home.

Continue reading “Reviewing A Very Dodgy BSK-602 Adjustable Power Supply”