Embedding Lenticular Lenses Into 3D Prints

A research project shows that it’s possible to create complex single-piece lenticular objects, or objects that have lenticular lenses built directly into them. The result is a thing whose appearance depends on the viewer’s viewpoint. The object in the image above, for example, is the same object from five different angles.

What’s really neat is that these colorful things have been 3D printed as single objects, no separate lenses or assembly required. Sure, it requires equipment that not just everyone has on their workbench, but we think a clever hacker could put the underlying principles to work all the same.

This lampshade (which was 3D printed as a single object) changes color and displays Good Day or Good Night depending on viewing angle.

The effect is essentially the same as what is sometimes seen in children’s toys and novelties — where a perceived image changes depending on the viewing angle. This principle has been used with a lenticular lens sheet to create a clever lenticular clock, but there’s no need to be limited by what lenses are available off the shelf. We’ve seen a custom 3D printed lenticular lens slapped onto a mobile device to create a 3D screen effect.

Coming back to the research, the objects researchers created go beyond what we’ve seen before in two important ways. First is in using software to aid in designing the object and it’s viewpoints (the plugin for Rhino 3D is available on GitHub), and the second is the scale of the effect. Each lens can be thought of as a pixel whose color depends on the viewing angle, and by 3D printing the lenses, one can fit quite a lot of them onto a surface with a high degree of accuracy.

To make these objects researchers used PolyJet 3D printing, which is essentially UV-cured resin combined with inkjet technology, and can create multi-color objects in a single pass. The lenses are printed clear with a gloss finish, the colors are embedded, and a final hit of sprayed varnish helps with light transmission. It sure beats placing hundreds of little lenses by hand.

Continue reading “Embedding Lenticular Lenses Into 3D Prints”

Light Brite Turned Sci-Fi Console On The Cheap

Generally, the projects featured on Hackaday actually do something. We won’t go as far as to say they are practical creations, but they usually have some kind of function other than to sit there and blink. But what if just sitting still and blinking away randomly is precisely what you want a piece of hardware to do?

That was exactly the goal when [createscifi] set out to dress a Lite Brite up as a futuristic prop. On a technical level, this project is pretty much as simple as it gets. But we appreciated seeing some of the techniques brought to bear on this project, and perhaps more importantly, really like the channel’s overall goal of creating affordable sci-fi props using common components. We don’t plan on filming our own space epic anytime soon…but we like to know the option is there.

Continue reading “Light Brite Turned Sci-Fi Console On The Cheap”

How The Lost Mystery Pigment ‘Maya Blue’ Got Recreated

A distinct blue pigment reminiscent of turquoise or a clear sky was used by the ancient Maya to paint pottery, sculptures, clothing, murals, jewelry, and even human sacrifices. What makes it so interesting is not only its rich palette — ranging from bright turquoise to a dark greenish blue — but also its remarkable durability. Only a small number of blue pigments were created by ancient civilizations, and even among those Maya blue is unique. The secret of its creation was thought to be lost, until ceramicist and artist [Luis May Ku] rediscovered it.

Maya blue is not just a dye, nor a ground-up mineral like lapis lazuli. It is an unusual and highly durable organic-inorganic hybrid; the result of a complex chemical process that involves two colorants. Here is how it is made: Indigotin is a dye extracted from ch’oj, the Mayan name for a specific indigenous indigo plant. That extract is combined with a very specific type of clay. Heating the mixture in an oven both stabilizes it produces a second colorant: dehydroindigo. Together, this creates Maya blue.

Luis May Ku posing with Maya blue.

The road to rediscovery was not a simple one. While the chemical makeup and particulars of Maya blue had been known for decades, the nuts and bolts of actually making it, not to mention sourcing the correct materials, and determining the correct techniques, was a long road. [May] made progress by piecing together invaluable ancestral knowledge and finally cracked the code after a lot of time and effort and experimentation. He remembers the moment of watching a batch shift in color from a soft blue to a vibrant turquoise, and knew he had finally done it.

Before synthetic blue pigments arrived on the scene after the industrial revolution, blue was rare and highly valuable in Europe. The Spanish exploitation of the New World included controlling Maya blue until synthetic blue colorants arrived on the scene, after which Maya blue faded from common knowledge. [May]’s rediscovered formula marks the first time the world has seen genuine Maya blue made using its original formula and methods in almost two hundred years.

Maya blue is a technological wonder of the ancient world, and its rediscovery demonstrates the resilience and scientific value of ancestral knowledge as well as the ingenuity of those dedicated to reviving lost arts.

We’re reminded that paints and coatings have long been fertile ground for experimentation, and as an example we’ve seen the success people had in re-creating an ultra-white paint that actually has a passive cooling effect.

A brown sphere with a flat top, a nose and circular eyes sits on the ground surrounded by low vegetation. A wooden fence is behind it.

Making A Stool From Clay

We’ve seen furniture made out of all sorts of interesting materials here, but clay certainly isn’t the first one that comes to mind. [Mia Mueller] is expanding our horizons with this clay stool she made for her garden.

Starting with an out-of-budget inspiration piece, [Mueller] put her own spin on a ceramic stool that looks like a whimsical human head. An experienced potter, she shows us several neat techniques for working with larger pieces throughout the video. Her clay extruder certainly beats making coils by hand like we did in art class growing up! Leaving the coils wrapped in a tarp allows her to batch the process coils and leave them for several days without worrying about them drying out.

Dealing with the space constraints of her small kiln, her design is a departure from the small scale prototype, but seeing how she works through the problems is what really draws us to projects like this in the first place. If it was easy, it wouldn’t be making, would it? The final result is a beautiful addition to her garden and should last a long time since it won’t rot or rust.

If you’re thinking of clay as a medium, we have some other projects you might enjoy like this computer mouse, 3D printing with clay, or a clay battery.

Continue reading “Making A Stool From Clay”

Building A Miniature Rainbow Sand Table

Sure is coarse and rough and irritating, and it gets everywhere. But it can also be beautiful — drag a small ball through it in a controlled manner you can make some really pretty patterns. That’s precisely what this compact build from [Printerforge] does.

The build relies on an ESP32 as the brains of the operation. It employs small 28BYJ-48 motors to run the motion platform. These were chosen as they operate on 5 V, simplifying the build by allowing everything to run off a single power supply. Along with a bunch of 3D printed parts, the motors are assembled into motion system with linear rods and belts in a CoreXY layout, chosen for speed and precision. It’s charged with moving a small magnet to drag a ball bearing through the sand to draw patterns under the command of G-code generated with the Sandify tool.

We’ve seen some great sand table builds over the years. Some use polar coordinate systems, while others repurpose bits of 3D printers. If you’ve got a creative new way of doing it, don’t hesitate to let us know!

The Junk Machine Prints Corrupted Advertising On Demand

[ClownVamp]’s art project The Junk Machine is an interactive and eye-catching machine that, on demand, prints out an equally eye-catching and unique yet completely meaningless (one may even say corrupted) AI-generated advertisement for nothing in particular.

The machine is an artistic statement on how powerful software tools that have genuine promise and usefulness to creative types are finding their way into marketer’s hands, and resulting in a deluge of, well, junk. This machine simplifies and magnifies that in a physical way.

We can’t help but think that The Junk Machine is in a way highlighting Sturgeon’s Law (paraphrased as ‘ninety percent of everything is crud’) which happens to be particularly applicable to the current AI landscape. In short, the ease of use of these tools means that crud is also being effortlessly generated at an unprecedented scale, swamping any positive elements.

As for the hardware and software, we’re very interested in what’s inside. Unfortunately there’s no deep technical details, but the broad strokes are that The Junk Machine uses an embedded NVIDIA Jetson loaded up with Stable Diffusion’s SDXL Turbo, an open source AI image generator that can be installed and run locally. When and if a user mashes a large red button, the machine generates a piece of AI junk mail in real time without any need for a network connection of any kind, and prints it from an embedded printer.

Watch it in action in the video embedded below, just under the page break. There are a few more different photos on [ClownVamp]’s X account.

Continue reading The Junk Machine Prints Corrupted Advertising On Demand”

Forget Pixel Art: Try Subpixels

[Japhy Riddle] was tired of creating pixel art. He went to subpixel art. The idea is that since each color pixel is composed of three subpixels, your display is actually three times as dense as you think it is. As long as you don’t care about the colors, of course.

Is it practical? No, although it is related to the Bayer filter algorithm and font antialiasing. You can also use subpixel manipulation to hide messages in plain sight.

Continue reading “Forget Pixel Art: Try Subpixels”