Raspberry Pi Pico LED display sitting in window sill

An Ode To The Aesthetic Of Light In 1024 Pixels

Sometimes, brilliant perspectives need a bit of an introduction first, and this is clearly one. This video essay by [Cleggy] delivers what it promises: an ode to the aesthetic of light. But he goes further, materializing his way of viewing things into a beautiful physical build — and the full explanation of how to do it at home.

What’s outstanding here is not just the visual result, but the path to it. We’ve covered tons of different LED matrices, and while they’re all functional, their eventual purpose is left up to the builder, like coasters or earknobs. [Cleggy] provides both. He captured a vision in the streets and then built an LED matrix from scratch.

The matrix consists of 1024 hand-soldered diodes. They’re driven by a Raspberry Pi Pico and a symphony of square waves. It’s not exactly a WS2812 plug-and-play job. It’s engineered from the silicon up, with D-latches and demultiplexers orchestrating a mesmerizing grayscale visual.

Pulse-width modulation (PWM) is the secret ingredient of this hack. [Cleggy] dims each white pixel separately, by varying the duty cycle of its light signal. The grayscale video data, compressed into CSV files, is parsed line-by-line by the Pico, translating intensity values into shimmering time slices.

It transforms the way you see and perceive things. All that, with a 1000 LED monochrome display. Light shows are all highly personal, and each one is a little different. Some of them are really kid stuff.

Continue reading “An Ode To The Aesthetic Of Light In 1024 Pixels”

Numbers Station Simulator, Right In Your Browser

Do you find an odd comfort in the uncanny, regular intonations of a Numbers Station? Then check out [edent]’s numbers station project, which leverages the browser’s speech synthesis engine to deliver a ceaseless flow of (mostly) numbers, calmly-intoned in various languages.

The project is an entry for the annual JavaScript Golfing Competition, in which participants aim to create a cool program in 1024 bytes or less. It cleverly relies on the Web Speech API to deliver the speaking parts, which helps keep the code size tiny. The only thing it’s missing is an occasional shadow of static drifting across the audio.

If you’re new to numbers stations, our own [Al Williams] is here to tell you all about them. But there’s no need to tune into an actual mysterious radio signal just to experience weird numbers; just fire up [edent]’s project, put on some headphones, and relax if you can.

A black and white illustration of people with headphones or microphones and floating empty speech bubbles. They appear happy and engaged with each other in a pleasant, park-like environment. In the foreground, on top of a wall, various anthropomorphized big tech logos like Apple, Amazon, and Google spy down on the people with binoculars like hunters assessing their prey. The text reads, "But like any good thing on the internet, there's a big tech monopoly trying to ruin it."

Long Live RSS!

While we know that many of you are reading Hackaday via our Really Simple Syndication (RSS) feed, we suspect that most people on the street wouldn’t know that it underlies a lot of the modern internet. [A. McNamee] and [A. Service] have created an illustrated history of RSS that proudly proclaims RSS is (not) dead (yet)!

While tens of millions of users used Google Reader before it was shut down, social media and search companies have tried to squeeze independent blogs and websites for an increasingly large part of their revenue, making it more and more difficult to exist outside the walled gardens of Facebook, Apple, Google, etc. Despite those of you that remember, RSS has been mostly forgotten.

RSS has been the backbone of the podcast industry, however, quietly serving feeds to millions of users everywhere with few of them aware that an open protocol from the 90s was serving up their content. As with every other corner of the internet where money could be made, corporate raiders have come to scoop up creators and skim the profits for themselves. Spotify has been the most egregious actor here, but the usual suspects of Apple, Google, and Amazon are also making plays to enclose the podcast commons.

If you’d like to learn more about how big tech is sucking the life out of the internet (and possibly how to reverse the enshittification) check out Cory Doctorow’s keynote from our very own Supercon.

DIY Book Lamp Is A Different Take On The Illuminated Manuscript

People have been coming up with clever ways to bring light to the darkness since we lived in caves, so it’s no surprise we still love finding interesting ways to illuminate our world. [Michael] designed a simple, but beautiful, book lamp that’s easy to assemble yourself.

This build really outshines its origins as an assembly of conductive tape, paper, resistors, LEDs, button cells, and a binder clip. With a printable template for the circuit, this project seems perfect for a makerspace workshop or school science project kids could take home with them. [Michael] walks us through assembling the project in a quick video and even has additional information available for working with conductive tape which makes it super approachable for the beginner.

The slider switch is particularly interesting as it allows you to only turn on the light when the book is open using just conductive tape and paper. We can think of a few other ways you could control this, but they quickly start increasing the part count which makes this particularly elegant. By changing the paper used for the shade or the cover material for the book, you can put a fun spin on the project to match any aesthetic.

If you want to build something a little more complex to light your world, how about a 3D printed Shoji lamp, a color-accurate therapy lamp, or a lamp that can tell you to get back to work.

Continue reading “DIY Book Lamp Is A Different Take On The Illuminated Manuscript”

Sand Drawing Table Inspired By Sisyphus

In Greek mythology, Sisyphus was a figure who was doomed to roll a boulder for eternity as a punishment from the gods. Inspired by this, [Aidan], [Jorge], and [Henry] decided to build a sand-drawing table that endlessly traces out beautiful patterns (or at least, for as long as power is applied). You can watch it go in the video below.

The project was undertaken as part of the trio’s work for the ECE4760 class at Cornell. A Raspberry Pi Pico runs the show, using TMC2209 drivers to command a pair of NEMA17 stepper motors to drag a magnet around beneath the sand. The build is based around a polar coordinate system, with one stepper motor rotating an arm under the table, and another panning the magnet back and forth along its length. This setup is well-suited to the round sand pit on top of the table, made with a laser-cut wooden ring affixed to a thick base plate.

The trio does a great job explaining the hardware and software decisions made, as well as showing off how everything works in great detail. If you desire to build a sand table of your own, you would do well to start here. Or, you could explore some of the many other sand table projects we’ve featured over the years.

Continue reading “Sand Drawing Table Inspired By Sisyphus”

19th Century Photography In Extreme Miniature

Ever since the invention of the microscope, humanity has gained access to the world of the incredibly small. Scientists discovered that creatures never known to exist before are alive in an uncountable number in spaces as small as the head of a pin. But the microscope unlocked some interesting forms of art as well. Not only could people view and photograph small objects with them, but in the mid-nineteenth century, various artists and scientists used them to shrink photographs themselves down into the world of the microscopic. This article goes into depth on how one man from this era invented the art form known as microphotography.

Compared to photomicroscopy, which uses a microscope or other similar optical device to take normal-sized photographs of incredibly small things, microphotography takes the reverse approach of taking pictures of normal-sized things and shrinking them down to small sizes. [John Benjamin Dancer] was the inventor of this method, which used optics to shrink an image to a small size. The pictures were developed onto photosensitive media just like normal-sized photographs. Not only were these unique pieces of art, which developed — no pun intended — into a large fad, but they also had plenty of other uses as well. For example, since the photographs weren’t at all obvious without a microscope, they found plenty of uses in espionage and erotica.

Although the uses for microphotography have declined in today’s digital world, there are still plenty of unique pieces of art around with these minuscule photographs, as well as a bustling collector culture around preserving some of the antique and historical microphotographs from before the turn of the century. There is also similar technology, like microfilm and microfiche, that were generally used to preserve data instead of creating art, although plenty of these are being converted to digital information storage now.

Resin keycap made from dried flowers

How To Make A Beautiful Floral Keycap Using Resin

Here’s a fun build. Over on their YouTube channel our hacker [Atasoy] shows us how to make a custom floral keyboard keycap using resin.

We begin by using an existing keycap as a pattern to make a mold. We plug the keycap with all-purpose adhesive paste so that we can attach it to a small sheet of Plexiglas, which ensures the floor of our mold is flat. Then a side frame is fashioned from 100 micron thick acetate which is held together by sticky tape. Hot glue is used to secure the acetate side frame to the Plexiglas floor, keeping the keycap centered. RTV2 molding silicone is used to make the keycap mold. After 24 hours the silicone mold is ready.

Then we go through a similar process to make the mold for the back of the keycap. Modeling clay is pushed into the back of the keycap. Then silicone is carefully pushed into the keycap, and 24 hours later the back silicone mold is also ready.

Continue reading “How To Make A Beautiful Floral Keycap Using Resin”