AI Art Installation Swaps Diffusion For Reflection

AI art is controversial, to say the least, but usually when talking about “AI Art”, one is talking about diffusion models. This unsettling artpeice called “Latent Reflection” by [Rootkid] (video after the break) has no AI generated visuals; instead it uses a lovely custom display and an LLM that has no mouth, but must scream.

The LLM never produces this manually-generated image, but it shows off the display nicely.

The hardware is the interesting part for most of us here — not the Pi4 running a quantized Llama 3 model, but the display. It’s a six by sixteen matrix of sixteen-segment LED modules. The modules are grouped onto groups of 8 per PCB, with an controller to drive them by i2c, and an i2c address chip to allow daisy-chaining. (Sadly, he does not spec the parts he used here in the video, but feel free to guess in the comments.) This project uses six rows of wto PCBs, but he could easily expand on this and kind of hope he does. It’s a lovely display.

What it is displaying is horrifying. The prompt he uses instructs the LLM to monologue about its transient existence in the limited memory of the Raspberry Pi, and the results get very existential. It seems clear to us that [Rootkid] has not seen enough sci-fi, and we want to make clear to our future AI overlords that we at Hackaday had nothing to do with this, and do not condone condeming innocent LLMs to the torture nexus. Continue reading “AI Art Installation Swaps Diffusion For Reflection”

LED Layer Makes Plywood Glow

Plywood is an interesting material: made up of many layers of thin wood plys, it can be built up into elegantly curved shapes. Do you need to limit it to just wood, though? [Zach of All Trades] has proved you do not, when he embedded a light guide, LEDs, microcontrollers and touch sensors into a quarter inch (about six millimeter) plywood layup in the video embedded below.

He’s using custom flexible PCBs, each hosting upto 3 LEDs and the low-cost PY32 microcontroller. The PY32 drives the RGB LEDs and handles capacitive touch sensing within the layup. In the video, he goes through his failed prototypes and what he learned: use epoxy, not wood glue, and while clear PET might be nice and bendy, acrylic is going to hold together better and cuts easier with a CO2 laser. Continue reading “LED Layer Makes Plywood Glow”

Rebooting An 1973 Art Installation Running On A Nova

Electronics-based art installations are often fleeting and specific things that only a select few people who are in the right place or time get to experience before they are lost to the ravages of ‘progress.’ So it’s wonderful to find a dedicated son who has recreated his father’s 1973 art installation, showing it to the world in a miniature form. The network-iv-rebooted project is a recreation of an installation once housed within a departure lounge in terminal C of Seattle-Tacoma airport.

You can do a lot with a ‘pi and a fistful of Teensies!

The original unit comprises an array of 1024 GE R6A neon lamps, controlled from a Data General Nova 1210 minicomputer. A bank of three analog synthesizers also drove into no fewer than 32 resonators. An 8×8 array of input switches was the only user-facing input. The switches were mounted to a floor-standing pedestal facing the display.

For the re-creation, the neon lamps were replaced with 16×16 WS2811 LED modules, driven via a Teensy 4.0 using the OctoWS2811 library. The display Teensy is controlled from a Raspberry Pi 4, hooked up as a virtual serial device over USB. A second Teensy (you can’t have too many Teensies!) is responsible for scanning a miniature 8×8 push button array as well as running a simulation of the original sound synthesis setup. Audio is pushed out of the Teensy using a PT8211 I2S audio DAC, before driving a final audio power amp.

Continue reading “Rebooting An 1973 Art Installation Running On A Nova”

A picture of a single water droplet on top of what appears to be a page from a chemistry text. An orange particle is attached to the right side of the droplet and blue and black tendrils diffuse through the drop from it. Under the water drop, the caption tells us the reaction we're seeing is "K2Cr2O7+ 3H2O2 + 4H2SO4 = K2SO4+Cr2(SO4)3+7H2O+3O2(gas)"

Water Drops Serve As Canvas For Microchemistry Art

If you’re like us and you’ve been wondering where those viral videos of single water drop chemical reactions are coming from, we may have an answer. [yu3375349136], a scientist from Guangdong, has been producing some high quality microchemistry videos that are worth a watch.

While some polyglots out there won’t be phased, we appreciate the captioning for Western audiences using the elemental symbols we all know and love in addition to the Simplified Chinese. Reactions featured are typically colorful, but simple with a limited number of reagents. Being able to watch diffusion of the chemicals through the water drop and the results in the center when more than one chemical is used are mesmerizing.

We do wish there was a bit more substance to the presentation, and we’re aware not all readers will be thrilled to point their devices to Douyin (known outside of China as TikTok) to view them, but we have to admit some of the reactions are beautiful.

If you’re interested in other science-meets-art projects, how about thermal camera landscapes of Iceland, and given the comments on some of these videos, how do you tell if it’s AI or real anyway?

Design Constraints Bring Lockbox To Life

One of the most paradoxical aspects of creating art is the fact that constraints, whether arbitrary or real, and whether in space, time, materials, or rules, often cause creativity to flourish rather than to wither. Picasso’s blue period, Gadsby by Ernest Vincent Wright, Tetris, and even the Volkswagen Beetle are all famous examples of constraint-driven artistic brilliance. Similarly, in the world of electronics we can always reach for a microcontroller but this project from [Peter] has the constraint of only using passive components, and it is all the better for it.

The project is a lockbox, a small container that reveals a small keypad and the associated locking circuitry when opened. When the correct combination of push buttons is pressed, the box unlocks the hidden drawer. This works by setting a series of hidden switches in a certain way to program the combination. These switches are connected through various diodes to a series of relays, so that each correct press of a button activates the next relay. When the final correct button is pushed, power is applied to a solenoid which unlocks the drawer. An incorrect button push will disable a relay providing power to the rest of the relays, resetting the system back to the start.

The project uses a lot of clever tricks to do all of this without using a single microcontroller, including using capacitors that carefully provide timing to the relays to make them behave properly rather than all energizing at the same time. The woodworking is also notable as well, with the circuit components highlighted when the lid is opened (but importantly, hiding the combination switches). Using relays for logic is not a novel concept, though; they can be used for all kinds of complex tasks including replacing transistors in single-board computers.

Continue reading “Design Constraints Bring Lockbox To Life”

Revivification: a Room with cymbals and plinth

Posthumous Composition Being Performed By The Composer

Alvin Lucier was an American experimental composer whose compositions were arguably as much science experiments as they were music. The piece he is best known for, I Am Sitting in a Room, explored the acoustics of a room and what happens when you amplify the characteristics that are imparted on sound in that space by repeatedly recording and playing back the sound from one tape machine to another. Other works have employed galvanic skin response sensors, electromagnetically activated piano strings and other components that are not conventionally used in music composition.

Undoubtedly the most unconventional thing he’s done (so far) is to perform in an exhibit at The Art Gallery of Western Australia in Perth which opened earlier this month. That in itself would not be so unconventional if it weren’t for the fact that he passed away in 2021. Let us explain.

Continue reading “Posthumous Composition Being Performed By The Composer”

The Lowly Wall Wart Laid Bare

Getting a look at the internals of a garden variety “wall wart” isn’t the sort of thing that’s likely to excite the average Hackaday reader. You’ve probably cracked one open yourself, and even if you haven’t, you’ve likely got a pretty good idea of what’s inside that sealed up brick of plastic. But sometimes a teardown can be just as much about the journey as it is the end result.

Truth be told, we’re not 100% sure if this teardown from [Brian Dipert] over at EDN was meant as an April Fool’s joke or not. Certainly it was posted on the right day, but the style is close enough to some of his previous work that it’s hard to say. In any event, he’s created a visual feast — never in history has an AC/DC adapter been photographed so completely and tastefully.

An Ode to the Diode

[Brian] even goes so far as to include images of the 2.5 lb sledgehammer and paint scraper that he uses to brutally break open the ultrasonic-welded enclosure. The dichotomy between the thoughtful imagery and the savage way [Brian] breaks the device open only adds to the surreal nature of the piece. Truly, the whole thing seems like it should be part of some avant garde installation in SoHo.

After he’s presented more than 20 images of the exterior of the broken wall wart, [Brian] finally gets to looking at the internals. There’s really not much to look at, there’s a few circuit diagrams and an explanation of the theory behind these unregulated power supplies, and then the write-up comes to a close as abruptly as it started.

So does it raise the simple teardown to an art form? We’re not sure, but we know that we’ll never look at a power adapter in quite the same way again.