An Improbable, Doomed Star System In A Clockwork Coffee Table

The major objects in our solar system orbit along the plane of the ecliptic, plus or minus few degrees, and it turns out most exoplanet systems are the same — pretty flat, with maybe one highly-inclined outlier. But at [The 5439 Workshop], they don’t care about these details: [5439] has come up with a mechanism to drive inclined orbits in an orrery, and he’s going to use it. The star is exploding, too, because why wouldn’t it be?

While the cinematography of this build video might not be to everyone’s taste, it’s worth watching to see the details of the project. The sliding mechanism to “explode” the star by sliding plates across each other is quite well-done, although perhaps not much not designed for assembly (we’re quite impressed he got it together). It isn’t quite the iris we had expected, as there’s a double-ratchet inside to drive the slow collapse/fast expansion dynamic [5439] is going for. It looks more like the breathing mode of a cepheid variable star than an explosion to us, but it’s still a fascinating piece of laser-sintered aluminum.

The driving mechanism for the inclined orbits is fairly simple, but also worth examining, as we’re not aware of anyone having used it before. The gear rings holding the planets are tilted, and are driven by straight vertical shafts via gears that pivot on knuckle joints. It’s not a revolutionary design, but it’s a big part of what makes this build unique. Since the solar system is very flat, clockwork orreries tend not to bother showing orbital inclination at all. Given the way planets are believed to form from a protoplanetary disk, a system with this many planets in such differing orbital planes seems unlikely to occur naturally, but it certainly adds visual interest.

We like model solar systems around here, be they made from brass and steel, molded plastic LEGO bits, or 3D printed and CNC routed aluminum like this one. That you can sit a coffee mug on it is just bonus. Continue reading “An Improbable, Doomed Star System In A Clockwork Coffee Table”

Photo of breadboards and bench oscilloscope

Programming The 6581 Sound Interface Device (SID) With The 6502

Over on YouTube, [Ben Eater] pursues that classic 8-bit sound. In this video, [Ben] integrates the MOS Technology 6581 Sound Interface Device (SID) with his homegrown 6502. The 6581 SID was famously used in the Commodore line of computers, perhaps most notably in the Commodore 64.

The 6581 SID supports three independent voices, each consisting of a tone oscillator/waveform generator, an envelope generator, and an amplitude modulator. These voices are combined into an output filter along with a volume control. [Ben] goes into detail concerning how to configure each of these voices using the available facilities on the available pins, referencing the datasheet for the details.

[Ben]’s video finishes with an 8-bit hit from all the way back in October 1985: Monty on the Run by Rob Hubbard. We first heard about [Ben’s] musical explorations back in June. If you missed it, be sure to check it out. It seems hard to imagine that demand for these chips has been strong for decades and shows little sign of subsiding.

Continue reading “Programming The 6581 Sound Interface Device (SID) With The 6502”

A central circular element is releasing steel ball bearings into a complex nest of eight intertwined plastic paths.

Mesmerizing Marble Runs From Procedural Generation

There are few things that can keep a certain kind of mechanically-inclined mind entranced as well as a marble run, and few structures that look as interestingly organic as procedurally-generated designs – combine the two and you get [Will Morrison]’s Marble Fountain.

[Will]’s first approach to generating a marble run was to have a script randomly place some points, generate a path following a spline through those points, and give that path a constant slope. This worked, but the paths it generated were a bit too simple to take full advantage of a 3D printer’s capabilities, so he next wrote a path solver to generate more complicated runs. The solver starts by generating a series of random line segments connecting the top and bottom of the run, then iteratively moves the segments into position. Each segment has to stay within the print volume, be evenly spaced with the others, maintain a constant slope, avoid segments from other tracks, and avoid distant segments of its own track. The result is a complicated network of tracks that keeps the marbles in motion without letting them fly out in fast sections. Continue reading “Mesmerizing Marble Runs From Procedural Generation”

Supercon 2025 Badge Gets Vintage Star Trek Makeover

There are still a few days before the doors open on this year’s Hackaday Supercon in Pasadena, but for the most dedicated attendees, the badge hacking has already begun…even if they don’t have a badge yet.

By referencing the design files we’ve published for this year’s Communicator badge, [Thomas Flummer] was able to produce this gorgeous 3D printed case that should be immediately recognizable to fans of the original Star Trek TV series.

Metal hinge pin? Brass inserts? Scotty would be proud.

Although the layout of this year’s badge is about as far from the slim outline of the iconic flip-up Trek communicator as you can get, [Thomas] managed to perfectly capture its overall style. By using the “Fuzzy Skin” setting in the slicer, he was even able to replicate the leather-like texture seen on the original prop.

Between that and the “chrome” trim, the finished product really nails everything Jadzia Dax loved about classic 23rd century designs. It’s not hard to imagine this could be some companion device to the original communicator that we just never got to see on screen.

While there’s no denying that the print quality on the antenna lid is exceptional, we’d really like to see that part replaced with an actual piece of brass mesh at some point. Luckily, [Thomas] has connected it to the body of the communicator with a removable metal hinge pin, so it should be easy enough to swap it out.

Considering the incredible panel of Star Trek artists that have been assembled for the Supercon 2025 keynote, we imagine this won’t be the last bit of Trek-themed hacking that we see this weekend — which is fine by us.

The winning entry, a photo of a fly on a grain of rice.

Nikon Small World Competition Announces 2025 Winners

They say that, sometimes, less is more. That would certainly apply to photomicrography, where you want to take pictures of tiny things. Nikon agrees, and they sponsor the Small World contest every year. The 2025 winners are a big — or not so big, maybe — deal.

This photomicrography competition dates back to 1975, so this is the 51st set of winners. First place went to [Zhang You] for his photograph of a rice weevil (sitophilus oryzae) on a grain of rice.

[You] is an entomologist from the Entomological Society of China. He says, “It pays to dive deep into entomology: understanding insects’ behaviors and mastering lighting, a standout work blends artistry with scientific rigor, capturing the very essence, energy, and spirit of these creatures.” We can’t argue with the results.

If you’re interested in Nikon and photography, you might also be interested in repairing a broken lens or a Nikon D3.

A clay mug is placed on a fire brick. Portions of the mug are glowing orange hot, and the heat is spreading across the surface. Some portions of the mug have cooled, and the heat has not reached other parts.

Thermite Pottery Fires Itself

Finely powdered aluminium can make almost anything more pyrotechnically interesting, from fireworks to machine shop cleanups – even ceramics, as [Degree of Freedom] discovered. He was experimenting with mixing aluminium powder with various other substances to see whether they could make a thermite-like combination, and found that he could shape a paste of aluminium powder and clay into a form, dry it, and ignite it. After burning, it left behind a hard ceramic material.

[Degree of Freedom] was naturally interested in the possibilities of self-firing clay, so he ran a series of experiments to optimize the composition, and found that a mixture of three parts of aluminium to five parts clay by volume worked best. However, he noticed that bubbles of hydrogen were forming under the surface of the clay, which could cause cracks during the firing. The aluminium was reacting with water to form the bubbles, somewhat like a unwanted form of aerated concrete, and for some reason the kaolinite in clay seemed to accelerate the reaction. Trying to passivate the aluminium by heating it in air or water didn’t prevent the reaction, but [Degree of Freedom] did find that clay extracted from the dirt in his back yard didn’t accelerate it as kaolinite did, and the mixture could dry out without forming bubbles.

This mixture wasn’t totally reliable, so to make it a bit more consistent [Degree of Freedom] added some iron oxide to accelerate the burn through an actual thermite reaction – some mixtures burned hot enough to start to melt the clay. After many tests, he found that sixteen parts clay, seven parts aluminium, and five parts iron oxide gave the best results. He fired two cups made of the mixture, a thin rod, and a cube, with mixed results. The clay expanded a bit during firing, which sometimes produced a rough finish, cracking, and fragility, but in some cases it was surprisingly strong.

The actual chemistry at work in the clay-aluminium mixtures is a bit obscure, but not all thermite reactions need to involve iron oxide, so there might have been some thermite component even in the earlier mixtures. If you need heat rather than ceramic, we’ve also seen a moldable thermite paste extruded from a 3D printer.

Continue reading “Thermite Pottery Fires Itself”

The Subtle Art Of Letterform Design

Typeface (such as Times New Roman) refers to the design that gives a set of letters, numbers, and symbols their signature “look”. Font, on the other hand, is a specific implementation of a typeface, for example, Times New Roman Italic 12 pt.

‘Q’ is a counterpoint to the idea that typography is just one fussy detail after another.

Right about this point, some of you are nodding along and perhaps thinking “oh, that’s interesting,” while the rest of you are already hovering over your browser’s Back button. If you’re one of the former, you may be interested in checking out the (sort of) interactive tour of typography design elements by the Ohno Type School, a small group that loves design.

On one hand, letters are simple and readily recognizable symbols. But at the same time, their simplicity puts a lot of weight on seemingly minor elements. Small changes can have a big visual impact. The tour lays bare answers to questions such as: What is the optimal parting of the cheeks of a capital ‘B’? At what height should the crossbar on an ‘A’ sit, and why does it look so weird if done incorrectly? And yet, the tail of a ‘Q’ can be just about anything? How and why does an ‘H’ define the spacing of the entire typeface? All these (and more) are laid bare.

Continue reading “The Subtle Art Of Letterform Design”