Enjoy A Refreshing Beverage With The Chilled Drink Calculator

Hackers are quite often the price conscious type, unwilling to pay jacked up prices for cold beverages when they can be purchased warm and in bulk for much lower cost. However, when guests are on the way and time is running out, it’s crucial to chill the drinks down to the right temperature, and fast. To take the guessing out of the process, [Álvaro Díez] and [Tibor Pal] collaborated to create the Chilled Drink Calculator.

It’s a resource jam-packed full of everything you need to know to get your drinks cold, pronto. Based on heat transfer equations and data from empirical studies, the calculator is able to show you just how long it will take to cool practically any beverage to any temperature. There are presets for different types of container and cooling method, as well as information on the ideal serving temperatures for things like wine, beer and soft drinks. There’s even information on helpful hacks to help cool things down more quickly – with the salt and ice bath being devastatingly effective with minimal equipment requirements.

Keep the calculator in your bookmarks for the next time your pals show up with a case of beer that’s been sitting in the sun all day in the back of a pickup truck (Authors note: looking at you, Terry). Alternatively, consider building an advanced cooling apparatus.

Keezer Controller Keeps The Kegs Pouring

It’s always a good idea to keep a few brews in the fridge ready to go, but being able to offer your guests a fresh-poured draught beer is another step above. It’s not trivial, but with a few kegs, a freezer and the right CO2 parts, it’s achievable for the average hacker. [Ben Brooks] had a keezer (keg freezer) setup that had been doing the job quite well, but wanted to take things up a notch.

Wishing to know when it was time to start brewing more beer, [Ben] needed a way to measure how much was left in the individual kegs. Opting to weigh them, initial experiments with a hand-made capacitive sensor failed when moisture in the freezer began to ruin the sensor’s performance. Switching to a strain-gauge based setup enabled more accurate readings to be taken with no drift over time. Solenoids were added to enable the taps to be shutdown outside of beer o’clock, and a Particle Photon and Raspberry Pi were put to work to give the whole project a slick web interface. There’s even a monitor to show guests what’s on tap!

It’s a tidy improvement to a home keg setup, and ensures [Ben]’s guests won’t be left thirsty in the middle of a party. We’ve seen other instrumented beer rigs before, too. If you’re working on your own homebrewing masterpiece, be sure to drop us a line.

Arduino And The Other Kind Of Homebrew

Usually, when we are talking about homebrew around here, we mean building your own equipment. However, most other people probably mean brewing beer, something that’s become increasingly popular as one goes from microbreweries to home kitchen breweries. People have been making beer for centuries so you can imagine it doesn’t take sophisticated equipment, but a little automation can go a long way to making it easier. When [LeapingLamb] made a batch using only a cooler, a stock pot, and a propane burner, he knew he had to do something better. That’s how Brew|LOGIC was born.

There are many ways to make beer, but Brew|LOGIC focuses on a single vessel process and [LeapingLamb] mentions that the system is akin to a sous vide cooker, keeping the contents of the pot at a specific temperature.

Honestly, though, we think he’s selling himself a bit short. The system has a remote application for control and is well-constructed. This isn’t just a temperature controller thrown into a pot. There’s also a pump for recirculation.

The common stock pot gets some serious modifications to hold the heating element and temperature probe. It also gets some spring-loaded clamps to hold the lid down. Expect to do a lot of drilling.

The electronics uses an Arduino, a Bluetooth board, and some relays (including a solid state relay). The finished system can brew between 5 and 15 gallons of beer at a time. While the system seems pretty good to us, he did list some ideas he has for future expansion, including valves, sensors for water level and specific gravity, and some software changes.

After reading that the system was similar to a sous vide cooker, we wondered if you could use a standard one. Turns out, you can. If you want to make better beer without electronic hacking, there’s always the genetic kind.

The First Vending Machine Hacked Liquor Laws: The Puss And Mew

It is fair to say that many technologies have been influenced by human vices. What you may not realize is that vending machines saw their dawn in this way, the first vending machine was created to serve booze. Specifically, it was created to serve gin, the tipple of choice of the early 18th century. it was created as a hack to get around a law that made it harder to sell alcoholic drinks. It was the first ever vending machine: the Puss and Mew.

Continue reading “The First Vending Machine Hacked Liquor Laws: The Puss And Mew”

Beverage Holder Of Science

The folks at [K&J Magnetics] have access to precise magnetometers, a wealth of knowledge from years of experience but when it comes to playing around with a silly project like a magnetic koozie, they go right to trial and error rather than simulations and calculations. Granted, this is the opposite of mission-critical.

Once the experimentation was over, they got down to explaining their results so we can learn more than just how to hold our beer on the side of a toolbox. They describe three factors related to magnetic holding in clear terms that are the meat and bones of this experiment. The first is that anything which comes between the magnet and surface should be thin. The second factor is that it should be grippy, not slippy. The final element is to account for the leverage of the beverage being suspended. Say that three times fast.

Magnets are so cool for anything from helping visualize gas atoms, machinists’ tools, and circumventing firearm security features.

Continue reading “Beverage Holder Of Science”

Boozer Tells The Internet How Much You Drink (If You Want It To)

Over the past few years, Reddit user [callingyougoulet] has created Boozer, a DIY beer dispenser that keeps track of how much of your brew you have left in your kegs. Installed in a Keezer (a freezer that contains beer kegs and faucets) [callingyougoulet]’s dispenser uses a Raspberry Pi to keep track of things. A series of flow sensors determine how much liquid has passed through them and, when the drink is poured, can calculate how much you poured and how much you have left.

Starting with a chest freezer, [callingyougoulet] built a nice wooden surround as well as installed a tower on top to hold the faucets. The top of the freezer has nice granite tiles covering it, and some LED accent lighting adds to the end product. However, taking the granite off in order to get at the kegs inside takes some time (about 20 minutes.)

Inside the freezer is the Raspberry Pi and four flow sensors, each one connected to a GPIO port on the Pi. After some calibration, the Python code running on the Pi can calculate a pretty close estimate of the amount of liquid poured. There’s also a temperature sensor in the freezer, so that you can tell how cool your beer is.

If the build had stopped there, it would have been a great project as-is, but [callingyougoulet] added twitter, Slack and MQTT outputs as options, so that a home automation system (or the entire internet) can tell how much and when you’ve been drinking and, more importantly, you can know how much is left in your kegs! There are some very cool keg cooling builds on the site, such as, a kegerator built from the ground up, and a very elegant kegerator built on the cheap check them out for ideas!

Via Reddit.

AH-1 Cobra Tap Handle Pours On The Fun

Ayn Rand said, “If it’s worth doing, it’s worth overdoing.” As far as we’re concerned those are words to live by, and something that’s exemplified by most of the posts on this site. She also said some really suspect stuff about the disabled and Native Americans and reality, but you’ve got to take the good with the bad and all that.

We don’t know how much Rand [Will Weber] has read, but we’re willing to bet he’d agree about overdoing it. He recently documented a very cool 3D printed tap handle that’s designed to look like the B8 flight stick from an AH-1 Cobra helicopter. But this is no static piece of plastic, in the video after the break, he demonstrates how each button on the flight stick triggers a different weapons sound effect.

The 3D print is separated up into a number of sections so that the stick can be assembled in pieces. Not only does this make it an easier print, it also allows for the installation of the electronics.

For the Arduino aficionados out there, we have some bad news. Rather than putting in a general purpose microcontroller, [Will] went the easy route and used an Adafruit Audio FX Mini Sound Board. These boards have their own onboard storage for the audio files and don’t require a microcontroller to function. It makes it super easy to add sound effects or even music to your projects; just pair it with a power supply, a couple of buttons, and a speaker.

The finish work on the printed parts looks excellent. We can only imagine how much fun [Will] had sanding inside all the little nooks and crannies to get such a smooth final result. While some might complain about the idea of a tap handle needing to be recharged occasionally, we think the satisfaction of firing off a few rockets every time you grab a glass is more than worth it.

While this isn’t the first unique tap handle we’ve covered here at Hackaday, it’s certainly the most flight-ready. Continue reading “AH-1 Cobra Tap Handle Pours On The Fun”