Building An Animated Turn Signal For The Mazda MX-5

Turn signals in most of the world are mandated to be a flashing orange light, distinct from other bulbs on a vehicle. However, there has been a trend in the modern era to go for fancier animated turn signals using great numbers of LEDs. [ssh16] decided to whip up a set of their own to suit their late-model Mazda MX-5.

Fully lit, the replacement is brighter than the original bulb by some margin.

While many builds go down the route of using addressable LEDs, [ssh16] instead went for garden variety OSRAM yellow LEDs in a 3×12 array, driven via a shift register. A small PIC microcontroller is then used to command the shift register to light the rows of LEDs in turn, generating the sequential lighting effect that sweeps from one side to the other. The LEDs are are installed on a 4″ board designed to install in place of the Mazda’s standard indicator bulb, with the animation spreading from the centerline of the vehicle out towards the direction of the turn.

It’s a fun build that modernizes the rear turn signals of the Mazda. We’ve seen some other neat turn signal builds before, too; it almost seems to be a trend amongst Mazda enthusiasts. Meanwhile, if you’ve built your own automotive lighting mods, don’t hesitate to send them in to the tipsline.

That’s Not A Junker… That’s My Generator

If you live somewhere prone to power outages, you might have thought about buying a generator. The problem is that small generators are cheap but — well — small. Big generators are expensive. [Jake von Slatt] had an idea. He has a “yard car” which we thought might be a junk car but, instead, it is an old car he uses to drive around his yard doing tasks. It has a winch and a welder. Now it has a big generator, too. You can follow the project in the three videos found below.

The project started with a scrap generator with a blown motor. Of course, the car has a motor so — in theory — pretty simple. Remove the generator from the motor and graft it to the car’s motor. But the details are what will kill you.

Continue reading “That’s Not A Junker… That’s My Generator”

Ballistic BMW Blocks Both Bullets And Booms

Maybe you like to live dangerously. Like, James Bond dangerously. Well, we won’t judge, but we will pass this along — BMW has created the ultimate driving machine for shootouts and war zones.

Rather than having aftermarket anti-ballistic bits and bobs attached at a later date, this BMW 7 Series is born anti-ballistic and explosion-resistant, built from the ground up with armor steel. They call this the BMW Protection Core.

By building it this way, there are many advantages like more cabin space, lower curb weight, and better handling, which is exactly what you’d want if you were under these types of attacks.

For starters, the car has chunkier A-pillars and door/window frames meant to withstand the damage pictured here. The car has special armoring in the roof and undercarriage to withstand explosions. And the fuel tank is self-sealing, so you have a chance at getting out of there if the thing takes a bullet.

Can’t afford this ballistic-grade beast? You could always roll your own armored vehicle.

A black race car with white text of sponsors moves across an asphalt surface. There is a blue wall and a green, grassy field in the background. The car has white and red stripes as well.

Students Set EV Acceleration World Record

Humans have a need for speed, and students from the Academic Motorsports Club Zurich (AMZ) have set a new acceleration record for an electric vehicle with a 0 to 100 km/h (0 to 62 mph) time of 0.956 seconds.

The mythen features four custom electric hub motors with a total output of 240 kW and a vehicle weight of 140 kg (309 lb) thanks to the use of carbon fiber and aluminum honeycomb. The car was able to get up to speed over only 12.3 m (40 ft)! As with many student design team projects, every component was hand built and designed to optimize the power to weight ratio of the vehicle.

The students from ETH Zurich and Lucerne University of Applied Sciences and Arts were excited to regain the record from the team at the University of Stuttgart, having previously held the title in 2014 and 2016. We suspect that they will find any European EV maker’s engineering department excited for the chance to hire them come graduation.

If you want to go fast at a smaller scale, checkout 3D printing RC car wheels for speed, and if you’d rather ride the rails at an accelerated rate, here’s an article on high speed rail.

Continue reading “Students Set EV Acceleration World Record”

Jailbreaking Tesla Infotainment Systems

With newer cars being computers on wheels, some manufacturers are using software to put features behind a paywall or thwarting DIY repairs. Industrious hackers security researchers have taken it upon themselves to set these features free by hacking a Tesla infotainment system. (via Electrek)

The researchers from TU Berlin found that by using a voltage fault injection attack against the AMD Secure Processor (ASP) at the heart of current Tesla models, they could run arbitrary code on the infotainment system. The hack opens up the double-edged sword of an attacker gaining access to encrypted PII or a shadetree mechanic “extracting a TPM-protected attestation key Tesla uses to authenticate the car. This enables migrating a car’s identity to another car computer without Tesla’s help whatsoever, easing certain repairing efforts.” We can see this being handy for certain other unsanctioned hacks as well.

The attack is purported as being “unpatchable” and giving root access that survives reboots and updates of the system. Since AMD is a vendor to multiple vehicle companies, the question arises as to how widely applicable this hack is to other vehicles suffering from AaaS (Automotive as a Service).

Longing for a modern drivetrain with the simplicity of yesteryear? Read our Minimal Motoring Manifesto.

Get MOST Into Your Pi

When looking the modify a passenger vehicle, the Controller Area Network (CAN) bus is a pretty easy target. In modern vehicles it has access to most of the on-board systems — everything from the climate control to the instrument cluster and often even the throttle, braking, and steering systems. With as versatile as the CAN bus is, though, it’s not the right tool for every job. There’s also the Media Oriented Systems Transport (MOST) bus which is increasingly found in automotive systems to handle multimedia such as streaming music to the stereo. To access that system you’ll need to approach it slightly differently as [Rhys] demonstrates.

[Rhys] has been working on replacing the dated head unit in his Jaguar, and began by investigating the CAN bus. He got almost everything working with replacement hardware except the stereo, which is where the MOST bus comes into play. It provides a much higher bandwidth than the CAN bus can accommodate but with almost no documentation it was difficult to interact with at first. With the help of a Raspberry Pi and a lot of testing he is able to get the stereo working again with a much more modern-looking touchscreen for control. It is also able to do things like change CDs in the car’s CD player, gather song information from the CD to display on the panel, and can perform other functions of the infotainment center.

For more detailed information on the MOST bus, [Rhys] also maintains a website where he puts his discoveries and other information he finds about this system. Unfortunately car stereo systems in modern vehicles can get pretty complicated these days, but adapting car stereos in older vehicles to modern technology carries some interesting challenges as well.

Continue reading “Get MOST Into Your Pi”

a modern car dipped into a chemical bath for electrodeposition adding a phosphate layer

Watching Paint Dry For Over 100 Years

A Model T Ford customer could famously get their car “in any color he wants, so long as it’s black.” Thus begins [edconway]’s recounting of the incremental improvements in car paint and its surprising role in mass production, marketing, and longevity of automobiles.

In it, we learn that the aforementioned black paint from Ford had so much asphalt in it that black was the only color that would work. Not to go down a This Is Spinal Tap rabbit hole, but there were several kinds of black on those Model Ts. Over 30 of them were used for various purposes. The paints also dried in different ways. While the assembly only took 12 hours, the paint drying time took days, even weeks backing up production and begging for innovation. [edconway] then fast-forwards to an era of “conspicuous consumption and ‘planned obsolescence’” with DuPont’s invention of Duco that brought color to the world of automobiles.

edconway graph of paint drying time by year

See the article for the real story of advances in paint technology and drying time. Paint application technology has also steadily improved over the years, so we recommend diving in to get the century’s long story.