Many people who read Hackaday hold the title of “Webmaster” but [The Thought Emporium] is after slightly different credentials with the same title. He aims to modify a strain of yeast to produce spider silk. Charlotte’s Web didn’t go into great detail about the different types of silk that a spider can produce, but the video and screencap after the break give a rundown of how spiders make different types of silk, and that each species of spider makes a unique silk. For this experiment, the desired silk is “beta sheets” which the video explains are hard and strong.
Some of the points mentioned in the video rely on things previously mentioned in other videos, but if you are the type of person excited by genetic modifications or using modified yeast to produce something made by another lifeform, you will probably be just fine. This is one of the most technical videos made by [The Thought Emporium] as he goes into the mechanisms of the modifications he will be making to the yeast. It sounds like a lot of work and the financial benefit of being able to produce spider silk affordably could be great, but in true hacker form, the procedure and results will be made freely available.
For some background into this hacker’s mind, check out how he has hacked his own lactose intolerance and even produced graphene through electrochemical exfoliation.
Continue reading “Arachnid Ale Uses Yeast To Make Spider Silk”




The FLCBs were rated at 100 mAh and just 2 C, both small values but still useful for wearables, especially given their flexibility. Doing some destructive testing, he managed to keep an LED lit while flexing the battery and cutting away at it with tin snips.


For many projects that require control of air pressure, the usual option is to hook up a pump, maybe with a motor controller to turn it on and off, and work with that. If one’s requirements can’t be filled by that level of equipment and control, then it’s time to look at commercial regulators. [Craig Watson] did exactly that, but found the results as disappointing as they were expensive. He found that commercial offerings — especially at low pressures — tended to leak air, occasionally reported incorrect pressures, and in general just weren’t very precise. Out of a sense of necessity he set out to design his own 

