Parts We Miss: The Mains Transformer

About two decades ago there was a quiet revolution in electronics which went unnoticed by many, but which overturned a hundred years of accepted practice. You’d have noticed it if you had a mobile phone, the charger for your Nokia dumbphone around the year 2000 would have been a weighty device, while the one for your feature phone five years later would have been about the same size but relatively light as a feather. The electronics industry abandoned the mains transformer from their wall wart power supplies and other places in favour of the much lighter and efficient switch mode power supply. Small mains transformers which had been ubiquitous in electronics projects for many years, slowly followed suit.

Coils Of Wire, Doing Magic With Electrons

Inside and outside views of Jenny Lists's home made linear power supply from about 1990
This was a state of the art project for a future Hackaday scribe back in 1990.

A transformer works through transferring alternating electrical current into magnetic flux by means of a coil of wire, and then converting the flux back to electric current in a second coil. The flux is channeled through a ferromagnetic transformer core made of iron in the case of a mains transformer, and the ratio of input voltage to output voltage is the same as the turns ratio between the two. They provide a safe isolation between their two sides, and in the case of a mains transformer they often have a voltage regulating function as their core material is selected to saturate should the input voltage become too high. The efficiency of a transformer depends on a range of factors including its core material and the frequency of operation, with transformer size decreasing with frequency as efficiency increases.

When energy efficiency rules were introduced over recent decades they would signal the demise of the mains transformer, as the greater efficiency of a switch-mode supply became the easiest way to achieve the energy savings. In a sense the mains transformer never went away, as it morphed into the small ferrite-cored part running at a higher frequency in the switch-mode circuitry, but it’s fair to say that the iron-cored transformers of old are now a rare sight. Does this matter? It’s time to unpack some of the issues surrounding a small power supply. Continue reading “Parts We Miss: The Mains Transformer”

In Defense Of Anthropomorphizing Technology

Last week I was sitting in a waiting room when the news came across my phone that Ingenuity, the helicopter that NASA put on Mars three years ago, would fly no more. The news hit me hard, and I moaned when I saw the headline; my wife, sitting next to me, thought for sure that my utterance meant someone had died. While she wasn’t quite right, she wasn’t wrong either, at least in my mind.

As soon as I got back to my desk I wrote up a short article on the end of Ingenuity‘s tenure as the only off-Earth flying machine — we like to have our readers hear news like this from Hackaday first if at all possible. To my surprise, a fair number of the comments that the article generated seemed to decry the anthropomorphization of technology in general and Ingenuity in particular, with undue harshness directed at what some deemed the overly emotional response by some of the NASA/JPL team members.

Granted, some of the goodbyes in that video are a little cringe, but still, as someone who seems to easily and eagerly form attachments to technology, the disdain for an emotional response to the loss of Ingenuity perplexed me. That got me thinking about what role anthropomorphization might play in our relationship with technology, and see if there’s maybe a reason — or at least a plausible excuse — for my emotional response to the demise of a machine.

Continue reading “In Defense Of Anthropomorphizing Technology”

They Want To Put A Telescope In A Crater On The Moon

When we first developed telescopes, we started using them on the ground. Humanity was yet to master powered flight, you see, to say nothing of going beyond into space. As technology developed, we realized that putting a telescope up on a satellite might be useful, since it would get rid of all that horrible distortion from that pesky old atmosphere. We also developed radio telescopes, when we realized there were electromagnetic signals beyond visible light that were of great interest to us.

Now, NASA’s dreaming even bigger. What if it could build a big radio telescope up on the Moon?

Continue reading “They Want To Put A Telescope In A Crater On The Moon”

Arctic Adventures With A Data General Nova II — The Equipment

As I walked into the huge high bay that was to be my part-time office for the next couple of years, I was greeted by all manner of abandoned equipment haphazardly scattered around the room. As I later learned, this place was a graveyard for old research projects, cast aside to be later gutted for parts or forgotten entirely. This was my first day on the job as a co-op student at the Georgia Tech Engineering Experiment Station (EES, since renamed to GTRI). The engineer who gave me the orientation tour that day pointed to a dusty electronic rack in one corner of the room. Steve said my job would be to bring that old minicomputer back to life. Once running, I would operate it as directed by the radar researchers and scientists in our group. Thus began a journey that resulted in an Arctic adventure two years later.

The Equipment

The computer in question was a Data General (DG) mini computer. DG was founded by former Digital Equipment Corporation (DEC) employees in the 1960s. They introduced the 16-bit Nova computer in 1969 to compete with DEC’s PDP-8. I was gawking at a fully-equipped Nova 2 system which had been introduced in 1975. This machine and its accessories occupied two full racks, with an adjacent printer and a table with a terminal and pen plotter. There was little to no documentation. Just to turn it on, I had to pester engineers until I found one who could teach me the necessary front-panel switch incantation to boot it up. Continue reading “Arctic Adventures With A Data General Nova II — The Equipment”

How Much Longer Will Cars Have Cigarette Lighter Ports?

Depending on the age of your car, it might contain a round 12 V power outlet in the dash, or possibly in the elbow compartment. And depending on your own age, you might know that as the cigarette lighter port. Whereas this thing used to have a single purpose — lighting cigars and cigarettes via hot coil — there are myriad uses today, from charging a phone to powering a dash camera to running one of those tire-inflating machines in a roadside emergency.

But how did it come to be a power source inside the vehicle? And how long will it stick around? With smoking on the decline for several decades, fewer and fewer people have the need for a cigarette lighter than do, say, a way to charge their phone. How long will the power source survive in this configuration?

Continue reading “How Much Longer Will Cars Have Cigarette Lighter Ports?”

The Cockpit Voice Recorder Controversy

Every time there’s a plane crash or other aviation safety incident, we often hear talk of the famous “black box”. Of course, anyone these days will tell you that they’re not black, but orange, for visibility’s sake. Plus, there’s often not one black box, but two! There’s a Flight Data Recorder (FDR), charged with recording aircraft telemetry, and a Cockpit Voice Recorder (CVR), designed to record what’s going on in the cabin.

It sounds straightforward enough, but the cockpit voice recorder has actually become the subject of some controversy in recent times. Let’s talk about the basics of these important safety devices, and why they’re the subject of some debate at the present time.

Continue reading “The Cockpit Voice Recorder Controversy”

Bell Labs Is Leaving The Building

If you ever had the occasion to visit Bell Labs at Murray Hill, New Jersey, or any of the nearby satellite sites, but you didn’t work there, you were probably envious. For one thing, some of the most brilliant people in the world worked there. Plus, there is the weight of history — Bell Labs had a hand in ten Nobel prizes, five Turing awards, 22 IEEE Medals of Honor, and over 20,000 patents, including several that have literally changed the world. They developed, among other things, the transistor, Unix, and a host of other high-tech inventions. Of course, Bell Labs hasn’t been Bell for a while — Nokia now owns it. And Nokia has plans to move the headquarters lab from its historic Murray Hill campus to nearby New Brunswick. (That’s New Jersey, not Canada.)

If your friends aren’t impressed by Nobels, it is worth mentioning the lab has also won five Emmy awards, a Grammy, and an Academy award. Not bad for a bunch of engineers and scientists. Nokia bought Alcatel-Lucent, who had wound up with Bell Labs after the phone company was split up and AT&T spun off Lucent.

Continue reading “Bell Labs Is Leaving The Building”