Building An Army Of ESP32 Air Quality Sensors

The ESP8266 and its heavyweight sibling the ESP32 are fantastic boards to develop with as they allow you to quickly and easily get a project online. Just tack a few sensors and some LEDs on them, and you’re well on the way to producing your own “Internet of Things”. The real challenge is utilizing the incredible capabilities these boards offer us to do something meaningful.

Judging by what he’s got so far, we think [Samuel Klit] is well on his way. He’s using the ESP32 and some off-the-shelf modular components to create an Internet-connected air quality monitoring station. But he’s not just building one or two of them, he’s building enough so they can be distributed and collect data over a wide area. Who knows, perhaps you’ll be building one next.

[Samuel] is using the CCS811 sensor which can pick up potentially harmful Volatile Organic Compounds (VOCs) and determine carbon dioxide concentrations, as well as a BMP280 sensor to read ambient temperature and atmospheric pressure. There’s also an SD card reader for local data storage, a 1602 LCD display that provides a basic user interface, and the electronics required to support the 18650 Li-Ion batteries which power the unit for up to 12 hours on a charge. Everything’s held in a professional looking enclosure that we’ll be sure to add to our next AliExpress order.

Collecting data is one thing, but what do you do with it once you’ve got it? To that end, each node runs a web interface that not only allows you to view current hardware status and download the locally stored data, but also provides an easy to understand visual representation of the environmental conditions. To get around the limited storage space for web assets on the chip, [Samuel] is calling out to Chart.js to inject some slick graphics into the web interface on-demand. The web interface is a particularly nice touch, and an excellent use of the power and capabilities offered by the ESP32.

We’ve previously seen air quality sensors added to Taxi cabs in Peru, the homes surrounding Barcelona’s Plaza del Sol, and of course [Radu Motisan] has done incredible work towards the goal of creating city-wide environmental monitoring networks. With increasingly capable technologies, it looks like citizens are studying the world around them in greater numbers than ever before.

Continue reading “Building An Army Of ESP32 Air Quality Sensors”

Whirling Sawblades Turn Foam Packaging Into Wall Insulation

If you’re like us, the expanded polystyrene (EPS) foam inserts that protect many packages these days are a source of mixed feeling. On the one hand, we’re glad that stuff arrives intact thanks to the molded foam inserts. But it seems so wasteful, especially when chucking it in the garbage can. If only it could be effectively recycled.

It turns out that it can be, if you equip yourself with this spinning “sawblades of doom” EPS recycler. It comes by way of [HowToLou], who was looking for a way to insulate a wall on the cheap. Almost all commercially available insulating materials – fiberglass batts, blown-in cellulose, expanding polyisocyanurate – are pretty pricey. Foam packing pieces are pretty easy to come by, though, and usually free for the taking. [Lou]’s method of turning them into insulation is a box containing four circular saw blades mounted to a piece of threaded rod and spun by a cordless drill. The blades are mounted askew on the rod for better reduction of the foam; [Lou] chose to use wire to hold the blades down, while we’d have printed up some slanted arbors and bolted the blades down more firmly. A chicken wire prefilter keeps the big chunks from clogging a blower made from an old bathroom exhaust fan, which does a great job of filling the wall cavities with pulverized EPS nuggets. The video below has all the details.

Honestly, the box is a little scary, and we have doubts that [Lou] will be able to get enough foam to finish the job, but it’s still a clever little hack. Grinding things up seems to be a theme for him; check out his leaf collector or his apple cider press.

Continue reading “Whirling Sawblades Turn Foam Packaging Into Wall Insulation”

A Network Attached Radiation Monitor

It started as a joke, as sometimes these things do. [Marek Więcek] thought building a personal radiation detector would not only give him something to work on, but it would be like having a gadget out of the Fallout games. He would check the data from time to time and have a bit of a laugh. But then things got real. When he started seeing rumors on social media that a nearby nuclear reactor had suffered some kind of radiation leak, his “joke” radiation detector suddenly became serious business.

With the realization that having his own source of detailed environmental data might not be such a bad idea after all, [Marek] has developed a more refined version of his original detector (Google Translate). This small device includes a Geiger counter as well as sensors for more mundane data points such as temperature and barometric pressure. Since it’s intended to be a stationary monitoring device, he even designed it to be directly plugged into an Ethernet network so that it can be polled over TCP/IP.

[Marek] based the design around a Soviet-era STS-5 Geiger tube, and outfitted his board with the high voltage electronics to provide it with the required 400 volts. Temperature, barometric pressure, and humidity are read with the popular Bosch BME280 sensor. If there’s no Ethernet network available, data from the sensors can be stored on either the built-in SPI flash chip or a standard USB flash drive.

The monitor is powered by a PIC32MX270F256B microcontroller with an Ethernet interface provided by the ENC28J60 chip. In practice, [Marek] has a central Raspberry Pi that’s polling the monitors over the network and collecting their data and putting it into a web-based dashboard. He’s happy with this setup, but mentions he has plans to add an LCD display to the board so the values can be read directly off of the device. He also says that a future version might add WiFi for easier deployment in remote areas.

Over the years we’ve seen a fair number of radiation monitors, from solar-powered WiFi-connected units to the incredible work [Radu Motisan] has done building his global network of radiation detectors. It seems hackers would rather not take somebody else’s word for it when it comes to the dangers of radiation.

Solar Power Is Set To Get More Expensive

The sun constantly bathes half the planet with energy. The energy may be free, but the methods for converting it to electricity cost money. Last year, the Chinese government cut subsidies to their solar panel manufacturers to shrink the industry which was perceived as bloated. This forced Chinese solar panel makers to cut prices to clear inventory. This drove down prices about 30%, making solar power cheaper than ever.

Reuters is reporting that Eric Luo, president of one of the largest solar panel makers in China, predicts that “the party is definitely over.” Speaking at the World Economic Forum, Luo said that prices have quit dropping and he expected industry consolidation to cause prices to rise by as much as 15% over the next two years.

Continue reading “Solar Power Is Set To Get More Expensive”

Make Your Cactus Bionic With Bionic Cactus

The closest some of us at Hackaday get to a green thumb comes when we are painting, so for us and other folks not gifted in the gardening department Bionic Cactus might help. It’s a neatly designed water and light control system, built around an ESP8266. You can control the system through a web interface, setting a schedule for water and light and seeing how much water is left in the reservoir. There is also a soil moisture sensor and it will even email you when it is running low on water. As creator [SamsonKing] notes, if you combine this with a 3D-printed plant pot and light holder, and you’ve got a complete system from growing herbs and spices in the middle of winter.

[SamsonKing] created the system using PlatformIO, a neat open source Internet of Things development platform that means you could probably switch the system over to run on other low-power platforms if you had them lying around. But with an ESP8266 typically costing no more than a few bucks, it’s a neat and low-cost way to keep your plants fed and watered.

Automated gardening has featured many times here at Hackaday, just one of many is this indoor hydroponic lettuce factory.

Cyborg, Or Leafy Sensor Array?

Some plants react quickly enough for our senses to notice, such as a Venus flytrap or mimosa pudica. Most of the time, we need time-lapse photography at a minimum to notice while more exotic sensors can measure things like microscopic pores opening and closing. As with any sensor reading, those measurements can be turned into action through a little trick we call automation. [Harpreet Sareen] and [Pattie Maes] at MIT brought these two ideas together in a way which we haven’t seen before where a plant has taken the driver’s seat in a project called Elowan. Details are sparse but the concept is easy enough to grasp.

We are not sure if this qualifies as a full-fledged cyborg or if this is a case of a robot using biological sensors. Maybe it all depends on which angle you present this mixture of plant and machine. Perhaps it is truly is the symbiotic relationship that the project claims it to be. The robot would not receive any instructions without the plant and the plant would receive sub-optimal light without the robot. What other ways could plants be integrated into robotics to make it a bona fide cyborg?

Continue reading “Cyborg, Or Leafy Sensor Array?”

Tumbleweed Turbine Wins Dyson Foundation Award

Wind turbines are great when the wind flow is predictable. In urban environments, especially in cities with skyscrapers, wind patterns can be truly chaotic. What you need, then, is a wind turbine that works no matter which way the wind blows. And just such a turbine has won the global first prize James Dyson Award. Check out their video below the break.

The turbine design is really neat. It’s essentially a sphere with vents oriented so that it’s always going to rotate one way (say, clockwise) no matter where the wind hits it. The inventors say they were inspired by NASA’s Tumbleweed project, which started off as a brainstorming session and then went on to roll around Antarctica. We tumbled into this PDF, and this summary report, but would love more info if any of you out there know something about Tumbleweeds.

Back to the turbine, though. How efficient is it? How likely is it to scale? How will a 3D-printed version drive a junk-bin brushless motor on my balcony? The jury is still out. But if a significant portion of the wind comes from otherwise unusable directions, this thing could be a win. Who’s going to be the first to 3D print one?

Continue reading “Tumbleweed Turbine Wins Dyson Foundation Award”