Magnetic Spheres Line Up For Rotary Encoder Duty

When it comes to rotary encoders, there are plenty of options. Most of them involve putting a credit card number into an online vendor’s website, though, and that’s sometimes just not in the cards. In that case building your own, like this encoder using magnetic spheres, is a pretty cool way to go too.

If he’d had less time to spare, we imagine [Antonio Ospite] would have gone for a commercial solution rather than building an encoder from scratch. Then again, he says his application had noise considerations, so maybe this was the best solution overall. He had some latching Hall effect sensors lying around, but lacked the ring magnet that is usually used with such sensors in magnetic encoders. But luckily, he had a mess of magnetic spheres, each 5 mm in diameter. Lined up in a circle around a knob made from a CD spindle, the spheres oriented themselves with alternating poles, which is just what the Hall sensors want to see. The sensors were arranged so the pulses are 90° apart, and can resolve 4.29° steps. Check out the video below to watch it work.

Small, cheap and effective are always good things. But magnets aren’t the only thing behind homebrew rotary encoders. A couple of microswitches might do in a pinch, or maybe even scrapped hard drives would suffice.

Continue reading “Magnetic Spheres Line Up For Rotary Encoder Duty”

Buck Converter Efficiency

We always appreciate when someone takes the time to build something and then demonstrates what different design choices impact using the real hardware. Sure, you can work out the math and do simulations, but there’s something about having real hardware that makes it tangible. [Julian Ilett] recently posted two videos that fit this description. He built a buck converter and made measurements about its efficiency using different configurations.

The test setup is simple. He monitors the drive PWM with a scope and has power meters on the input and output. That makes it easy to measure the efficiency since it is just the ratio of the power output to input. You can see the two videos, below.

Continue reading “Buck Converter Efficiency”

An Electromagnet Brings Harmony To This Waving Cat

We’ve noticed waving cats in restaurants and stores for years, but even the happy bobbing of their arm didn’t really catch our attention. Maybe [Josh] had seen a couple more than we have when it occurred to him to take one apart to see how they work. They are designed to run indoors from unreliable light sources and seem to bob along forever. How do the ubiquitous maneki-neko get endless mechanical motion from one tiny solar cell?

Perhaps unsurprisingly given the prevalence and cost of these devices, the answer is quite simple. The key interaction is between a permanent magnet mounted to the end of the waving arm/pendulum and a many-turn wire coil attached to the body. As the magnet swings over the coil, its movement induces a voltage. A small blob of analog circuitry reacts by running current through the coil. The end effect is that it “senses” the magnet passing by and gives it a little push to keep things moving. As long as there is light the circuit can keep pushing and the pendulum swings forever. If it happens to stop a jolt from the coil starts the pendulum swinging and the rest of the circuit takes over again. [Josh] points to a similar circuit with a very nice write up in an issue of Nuts and Volts for more detail.

We’ve covered [Josh]’s toy teardowns before and always find this category of device particularly interesting. Toys and gadgets like the maneki-neko are often governed by razor-thin profit margins and as such must satisfy an extremely challenging intersection of product constraints, combining simple design and fabrication with just enough reliability to not be a complete disappointment.

For more, watch [Josh] describe his method in person after the break, or try flashing his code to an Arduino and make a waving cat of your own.

Continue reading “An Electromagnet Brings Harmony To This Waving Cat”

Blown plastic from a plastics blow oven

Blowing Arcylic Canopies Using Stuff From Around The Shop

Blowing an acrylic sheet after heating it is an easy way to make a smooth and transparent canopy or bubble for anything from clams to light fixtures. [Michael Barton-Sweeney] does it using plastic blow ovens he made cheaply, mainly from stuff which most of us already have in our workshops.

Plastics blow ovenAll you need is a way to heat the plastic, to then clamp it down around the edges, and finally to blow air into it as you would when blowing up a balloon. Of course, there are things to watch out for such as making sure the plastic is heated evenly and letting it cool slowly afterward but he covers all that on his hackaday.io page.

He’s also on his second plastics blow oven. The first one worked very well and is perhaps the easiest to make, building up an enclosure of CMUs (cinder blocks) and brick. He had success heating it with both propane and with electric current run through Kanthal wire. But the CMUs absorbed a lot of heat, slowing down the process. So for his second one he made a cast concrete enclosure with aluminum reflectors inside to focus the heat more to where needed.

We’re not sure of everything he’s blown acrylic bubbles for but we first learned of his ovens from the transparent clams in his underwater distributed sensor network. In fact, he was inspired to do plastics blowing from a childhood memory of the Air Force museum in Dayton, Ohio, where they visited the restoration hanger and watched the restorers blowing bubbles for a B-17 ball turret.

Though if you want to go smaller and simpler for something like a light fixture then you can get away with using a toaster oven, a PVC pipe, and a toilet flange.

Cheap Stuff To Hack: A Router With An SDR For $13

The history of consumer electronics is littered with devices that are relatively uninteresting at first, but become spectacular platforms for hardware exploitation once a few select people figure out how everything ticks. The Linksys WRT54G was just a router until someone figured out how to put a complete Linux system on them. Those RTL-SDR dongles were just for capturing over the air TV until someone realized they were actually a software-defined radio. The CueCat was just dot-com boom marketing garbage until… well, we picked up a lot of CueCats regardless.

Now there’s a new device sitting on the shelves at Walmart just waiting for some Linux hackers to have a go. It’s the Tzumi MagicTV, a device that allows you to watch over-the-air television on your phone. What’s inside? It’s a WiFi router, an RTL-SDR, and a battery pack in one tiny package. The best part? It costs $13, and apparently Walmart is just blowing them out.

Right now, there aren’t too many details on what’s going on inside the Tzumi MagicTV box, however, the discussion over on the RTLSDR subreddit has revealed enough to give us a good idea of what’s going on. The router inside the MagicTV is a TP-Link TL-WR703N, the exact same WiFi router that took the WRT54G’s place as the king of hackable routers a few years ago. The SDR chip is the same as the Astrometa DVB-T2, one of the common TV tuners on-a-stick. Other than that, there are TX and RX pins on the board, SSH is open, no one knows the password, but as of this writing, a few people are putting John the Ripper to work trying to break into this box.

What is the end goal of cracking this Linux box wide open? Well, it’s a WiFi router and an SDR, so if you want to make your own Flightaware ADS-B logger, that could be on the table. Of course, you could actually use it for its intended purpose and pull down over-the-air TV to your local network, but that seems so pedestrian after getting root on a $13 box from Walmart.

Thanks [Adam] for the tip!

Monitoring Air Quality, One Sleepy Meeting At A Time

To those of us in the corporate world, the conference room is where hope goes to die. Crammed into a space too small for the number of invitees, the room soon glows with radiated body heat and the aromas of humans as the time from their last shower gradually increases. To say it’s not a recipe for productivity is an understatement at best.

Having suffered through too many of these soporific situations, [Charles Ouweland] took matters into his own hands and built this portable air quality meter for meetings. With an OLED display on top and sensors inside, it displays not only the temperature, humidity, and barometric pressure, but also the CO₂ concentration and the levels of volatile organic compounds (VOC), noxious substances sometimes off-gassed from building materials, furniture upholstery, and coworkers alike.

The monitor quantifies his meeting misery, which we’re sure wins him points with his colleagues. For our part, though, what we find interesting is his design process. He started where many of us would, with an Arduino Uno. The sensor modules, a CCS811 for VOC and CO₂ as well as a BME280 for temperature, humidity, and pressure, both needed 3.3 volts, so he added a regulator to knock the Arduino’s 5-volt supply into range and some MOSFETs for level matching. Things were getting bulky, though, so he set about reducing the component count. The Uno went by stripping out its already programmed MCU. That killed the need for the regulator and MOSFETs, since everything would be happy with 3.3 volts. A few more rounds of optimization led to the final product, compact enough to run on a pair of AA batteries.

This is a great lesson in going from prototype to product. And it’s so compact, it could even ride on top of a Roomba to map the conference room’s floor-level air quality.

A Nicely Crafted POV Lightsaber

We need to have a talk. As tough a pill as it is to swallow, we have to face that fact that some of the technology promised to us by Hollywood writers and prop makers just isn’t going to come true. We’re never going to have a flux capacitor, actual hoverboards aren’t a real thing, and nobody is going to have sword fights with laser beams.

But just because we can’t have real versions of these devices doesn’t mean we can’t make our own prop versions with a few value-added features, like this cool persistence-of-vision lightsaber. [Luni], better known around these parts as [Bitluni] and for his eponymous YouTube channel where he performs wizardry like turning an ESP32 into a software-defined television station, shows he’s no slouch at more mechanical builds either. The hardware is standard POV fare, with a gyro to sense the position of the lightsaber hilt and an ESP32 to run the long Neopixel strip in the blade. There’s also a LiPo pack and a biggish DC-DC converter; the latter contributes mightily to the look of the prop, with its large heatsinks that stick out from the end of the aluminum tubing hilt. There’s also a small speaker and amp for the requisite sound effects on startup and shutdown, and the position-sensitive thrumming is a nice touch too. Check out the POV action in the video below.

What’s that you say? You recall seeing a real lightsaber here before? Well, sort of, but that’s pushing things a bit. Or perhaps you’ve got this more destructive version in mind.

Continue reading “A Nicely Crafted POV Lightsaber”