An Unmanned Ground Vehicle, Compatable With An Arduino

Building your own robot is something everyone should do, and [Ahmed] has already built a few robots designed to be driven around indoors. An indoor robot is easy, though: you have flat surfaces to roll around on, and the worst-case scenario you have a staircase to worry about. An outdoor robot is something else entirely, which makes this project so spectacular. It’s the M1 Rover, an unmanned ground vehicle, built around the Arduino platform.

The design goal of the M1 Rover isn’t just to be a remote-controlled car that can be driven around indoors. This robot is meant for rough terrain, and is a robot that can be programmed, can also be driven around by a computer, a video game controller, or custom joysticks.

To this end, the M1 rover is designed around high-quality laser cut plywood, powered by a few DC motors controlled through a dual H-bridge, and loaded up with sensors, including a front-mounted ultrasonic sensor. All the electronics are tucked away in the chassis, and the software is just fantastic. In fact, with the addition of a smartphone skillfully mounted to the top of the chassis, this little robot can became an autonomous rover, complete with a webcam. It’s one of the better robotic rover projects we’ve seen, and amazing addition to this year’s Hackaday Prize.

The Leap Motion Makes Robots Bend To Your Will

We just wrapped up the Human Computer Interface challenge in this year’s Hackaday Prize, and this project is pushing boundaries we’ve hardly seen before. [Giovanni Leal] is using a Leap Motion controller to move a robotic arm around in space.

The robot arm in question comes from Owi, and it is by every measure not a good robot arm. It is, however, an excellent toy filled with motors and plastic linkages that serves as a good stand-in for a proper robotic arm.

Control of this toy robot arm is done through a Leap Motion controller. While the Leap Motion is a few years old at this point, it is a very effective way to ‘measure’ the position and rotation of a hand in 3D space. The only thing that’s required is the Leap Motion controller itself and a tabletop.

The end result is a robot that can be controlled by a hand. While this robot arm is really just a toy, it was fun to assemble and a little bit of hardware hacking with an Arduino turned this into a working robot arm controlled by a human. Scale this up, establish an island lair, and you’re on your way to taking over the world.

Watch The Snappy, Insect-like Moves Of This DIY Quadruped Robot

Some legged robots end up moving with ponderous deliberation, or wavering in unstable-looking jerks. A few unfortunates manage to do both at once. [MusaW]’s 3D Printed Quadruped Robot, on the other hand, moves in rapid motions that manage to look sharp and insect-like instead of unstable. Based on an earlier design he made for a 3D printable quadruped frame, [MusaW] has now released this step-by-step guide for building your own version. All that’s needed is the STL files and roughly $50 in parts from the usual Chinese resellers to have the makings of a great weekend project.

The robot uses twelve SG90 servos and an Arduino nano with a servo driver board to control them all, but there’s one additional feature: Wi-Fi control is provided thanks to a Wemos D1 Mini (which uses an ESP-8266EX) acting as a wireless access point to serve up a simple web interface through which the robot can be controlled with any web browser.

Embedded below is a brief video. The first half is assembly, and the second half demonstrates the robot’s fast, sharp movements.

Continue reading “Watch The Snappy, Insect-like Moves Of This DIY Quadruped Robot”

Walk It Off, Healing Robots

For many of us, our first robots, or technical projects, were flimsy ordeals built with cardboard, duct tape, and high hopes. Most of us grow past that scene, and we learn to work supplies which require more than a pair of kitchen scissors. Researchers at Carnegie Mellon University and Iowa State University have made a material which goes beyond durable, it can heal itself when wounded. To a small robot, a standard hole puncher is a dire assailant, but the little guy in the video after the break keeps hopping around despite a couple of new piercings.

The researcher’s goal is to integrate this substance into bio-inspired robots which may come to harm in the field. Fish-like robots could keep swimming after a brush with a bit of coral or a curious predator. Robot snakes could keep slithering after a fall or a gravel road.

Of course, robotic simulacrums are not the only ones who can benefit from healing circuitry. Satellites are prey to punctures from errant space debris.

Continue reading “Walk It Off, Healing Robots”

Gesture Control Without Fancy Sensors, Just Pots And Weights

[Dennis] aims to make robotic control a more intuitive affair by ditching joysticks and buttons, and using wireless gesture controls in their place. What’s curious is that there isn’t an accelerometer or gyro anywhere to be seen in his Palm Power! project.

The gesture sensing consists not of a fancy IMU, but of two potentiometers (one for each axis) with offset weights attached to the shafts. When the hand tilts, the weights turn the shafts of the pots, and the resulting readings are turned into motion commands and sent over Bluetooth. The design certainly has a what-you-see-is-what-you-get aspect to it, and as a whole it works much like an inverted, weighted joystick hanging from one’s palm.

It’s an economical way to play with the idea of motion sensing, and when it comes to prototyping, being able to test a concept while keeping costs to a minimum is a good skill to have.

Maker Faire NY: Where Robots Come Out To Play

There was an unbelievable amount of stuff on display at the 2018 World Maker Faire in New York. Seriously, an unreal amount of fantastically cool creations from all corners of the hacker and maker world: from purely artistic creations to the sort of cutting edge hardware that won’t even be on the rest of the world’s radar for a year or so, and everything in between. If you’ve got a creative bone in your body, this is the place for you.

But if there was one type of creation that stood out amongst all others, a general “theme” of Maker Faire if you will, it was robotics. Little robots, big robots, flying robots, battling robots, even musical robots. Robots to delight children of all ages, and robots to stalk the darkest corners of their nightmares. There were robots for all occasions. Probably not overly surprising for an event that has a big red robot as its mascot, but still.

There were far too many robots to cover them all, but the following is a collection of a few of the more interesting robotic creations we saw on display at the event. If you’re the creator of one of the robots we didn’t get a chance to get up close and personal with in our whirlwind tour through the Flushing Meadows Corona Park, we only ask that you please don’t send it here to exact your revenge. We’re very sorry. (Just kidding, if you have a robot to show off drop a link in the comments!)

Continue reading “Maker Faire NY: Where Robots Come Out To Play”

Self-Solving Rubik’s Cube

Rubik’s Cube has been around for what seems like forever now, and has spawned an entire subculture devoted to solving the puzzle with automation. Most Rubik robots put the cube in a specially designed cradle bristling with actuators and sensors, and while those rigs are impressive, they don’t come close to this robotic Rubik solver built into the cube itself.

Fair warning that [Human Controller] doesn’t provide much detail on this build other than pictures; even translating the Japanese web page doesn’t offer much more information. But there are pictures, plus the video below, which reveal the engineering masterpiece encased within the standard sized Rubik’s cube. The internal mechanism of the original cube had been replaced by a spherical assembly around which the cube’s faces rotate. The sphere, which appears to be 3D-printed, houses six motors and gear trains, along with a microcontroller board and what appear to be Hall sensor boards to detect the position of each face. Everything is wired up with magnet wire to keep bundles to a minimum size, and buried deep inside is a LiPo battery pack. A disassembly video offers further clues to this ingenious device’s inner workings.

Once the cube senses that it has been scrambled, it sets to work on the solution, walking all over the table in the process. It’s clearly not just recording the scrambling steps and playing them back in reverse; the video below shows far more moves to solve the cube than the 15 it took to scramble it.

While we’re always impressed by marvels of speed like this robot with a 637 millisecond solve time, putting everything needed to solve the cube inside it is a feat worth celebrating. Here’s hoping that a build log shows up soon to satisfy our need for details.

Continue reading “Self-Solving Rubik’s Cube”