RoMeLa's ALPHRED - quadruped robot

RoMeLa’s Sideways Walking Robot Has Evolved More Limbs

Despite the success shown in prototypes from groups like Boston Dynamics, bipedal walking is still really hard to implement. When the robot lifts one leg, it has to shift its center of gravity over the other leg to avoid falling sideways.

The Autonomous Legged Personal Helper Robot with Enhanced Dynamics (ALPHRED) is getting around this problem by coming at it from a different angle. ALPHRED walks sideways and throws away the distinction between arms and legs.

The bot is RoMeLa at UCLA’s latest evolution in their approach to traditional bipedal roadblocks. Sideways walking is something we covered when we talked about their previous version, NABi, which had only two legs. ALPHRED expands that to four limbs. As the video below shows, all four limbs can be used for walking using either a wide, stable sprawl or the limbs can reorient to a narrower dog or horse-like stance for faster running.

Beyond walking, one or two of the limbs can be put to use as hands to open a door or hand over a package, which is why they refer to them as limbs instead of legs or hands. Only an animation is shown of that configuration but RoMeLa is a robotics lab which we keep an eye on so we’ll let you know if they demonstrate it.

The video goes on to show a neat actuator with active compliance which they call BEAR, Back-drivable Electromagnetic Actuator for Robots. A search turned up no further details but let us know in the comments if you have any. We also liked seeing how they use a speaker to give a rough idea of the amount of current being drawn. While it’s both practical and a hack, it also adds a nice sci-fi touch.

Continue reading “RoMeLa’s Sideways Walking Robot Has Evolved More Limbs”

Gentle Electric Eel

It’s no shock that electric eels get a bad rap for being scary creatures. They are slithery fleshy water snakes who can call down lightning. Biologists and engineers at the University of California had something else in mind when they designed their electric eel. Instead of hunting fish, this one swims harmlessly alongside them.

Traditional remotely operated vehicles have relied on hard shells and spinning propellers. To marine life, this is noisy and unnatural. A silent swimmer doesn’t raise any eyebrows, not that fish have eyebrows. The most innovative feature is the artificial muscles, and although the details are scarce, they seem to use a medium on the inside to conduct a charge, and on the outside, the saltwater environment conducts an opposite charge which causes a contraction in the membrane between to the inside and outside. Some swimming action can be seen below the break, and maybe one of our astute readers can shed some light on this underwater adventurer’s bill of materials.

One of our favorite submarines is the 2017 Hackaday Prize winner, The Open Source Underwater Glider. For a more artistic twist on submersibles, the Curv II is one of the most elegant we have seen.

Continue reading “Gentle Electric Eel”

Modular Robotics: When You Want More Robots In Your Robot

While robots have been making our lives easier and our assembly lines more efficient for over half a century now, we haven’t quite cracked a Jetsons-like general purpose robot yet. Sure, Boston Dynamics and MIT have some humanoid robots that are fun to kick and knock over, but they’re far from building a world-ending Terminator automaton.

But not every robot needs to be human-shaped in order to be general purpose. Some of the more interesting designs being researched are modular robots. It’s an approach to robotics which uses smaller units that can combine into assemblies that accomplish a given task.

We’ve been immersing ourselves in topics like this one because right now the Robotics Module Challenge is the current focus of the Hackaday Prize. We’re looking for any modular designs that make it easier to build robots — motor drivers, sensor arrays, limb designs — your imagination is the limit. But self contained robot modules that themselves make up larger robots is a fascinating field that definitely fits in with this challenge. Join me for a look at where modular robots are now, and where we’d like to see them going.

Continue reading “Modular Robotics: When You Want More Robots In Your Robot”

Mike's robot dog

Mike’s Robot Dog Is A First Step In The Right Direction

Humans can traverse pretty much any terrain thanks to their legs and fast-acting balancing system. So if you want a robot which should have equal flexibility, legs are a good way to go, this confirmed by all the achievements of Boston Dynamics’ robots. It was therefore natural for [Mike Rigsby] to model his robot dog after Boston Dynamics’ dog-like robot, SpotMini.

The build log on his Hackaday.io page makes for interesting reading. For example, he started out with the legs oriented like SpotMini but found that when trying to stand, the front legs worked fine but the rear ones slid or the dog shifted rearward or both happened. His solution was to take a cue from his 1990s Sony robot dog, Aibo, by reversing the orientation of the rear legs. He then upgraded his servo motors to ones with double the torque and increased the strength of the legs’ structure. In the first video below, you can see that his dog now lifts itself up to a standing position perfectly.

So far, to give it more of a dog-like personality he’s mounted Google’s AIY Vision Kit which changes a light’s color based on the degree to which a person is smiling, though we think a wagging tail would work well too. The possibilities are endless but one step at a time. See the second video below for a demonstration of the use of the Vision Kit.

Continue reading “Mike’s Robot Dog Is A First Step In The Right Direction”

Colossal Hydraulic Hulkbuster Is Classic Colin Furze

[Colin Furze] is back at it – once again shrugging off the confines of feasibility and laughing in the face of sanity, all whilst sporting the signature tie with unrivalled style.

Teaming up with [James Bruton], the result of their collective talent this time is a hydraulic hulkbuster suit, at a frankly ridiculous scale. This is the third and final episode of the build process, with the first two covering the legs and body

To demonstrate the strength of his latest toy, [Colin] tapes himself to the arm of his creation and promptly gets swung into a wall. We still don’t entirely understand how [Colin] survives his antics, but we’re very glad he does.

The steel frame is a masterclass in welding and fabrication, providing support for three hydraulic pumps, the accompanying rams, some seriously hefty bearings (think 1 m diameter), and one Colin. As if a giant moving steel behemoth wasn’t enough, each arm houses a weapon: a flamethrower and a power-fist. All parts are sourced from eBay.

The control electronics and 3D-printed skin are pretty nifty too – you can see [James]’s first video here.

We’re hard pressed to pick our favourite Furze projects, but we have to mention the flamethrower guitar and hoverbike.

Continue reading “Colossal Hydraulic Hulkbuster Is Classic Colin Furze”

San Francisco: Let’s Learn To Build Some Robots!

Hone your skills at basic robot building. You’re invited to join Hackaday for a Beginner Robotics Workshop on Saturday, May 12.

For this workshop we’re pairing up with FIRST robotics mentors and students from the Bay Area. FIRST is an international high school robotics competition and you won’t believe what these teams can do. The workshop will start with an overview of the three major parts that go into a robot project: mechanical design, electronic design, and programming. From there, choose one of the three you want to focus on for the afternoon and let the hands-on fun begin as we break out into small groups to tackle some robotics problems!

The mechanical group will explore robot building using OnShape CAD software. The electronic group will work hands-on with Arduino-based prototyping and breakout boards. The programming group will utilize the Arduino IDE. Workshops will wrap up with a group discussion of how these three concepts are integrated in a single robotics effort.

Right now the Robotics Module Challenge of the 2018 Hackaday Prize is in full swing. We’re excited to see more roboticists in the world and are happy to bring you a workshop that is both technical and accessible. Come build some ‘bots and take home some new knowledge to pour into your project, and your Hackaday Prize entries!

Training The Squirrel Terminator

Depending on which hemisphere of the Earth you’re currently reading this from, summer is finally starting to fight its way to the surface. For the more “green” of our readers, that can mean it’s time to start making plans for summer gardening. But as anyone who’s ever planted something edible can tell you, garden pests such as squirrels are fantastically effective at turning all your hard work into a wasteland. Finding ways to keep them away from your crops can be a full-time job, but luckily it’s a job nobody will mind if automation steals from humans.

Kitty gets a pass

[Peter Quinn] writes in to tell us about the elaborate lengths he is going to keep bushy-tailed marauders away from his tomatoes this year. Long term he plans on setting up a non-lethal sentry gun to scare them away, but before he can get to that point he needs to perfect the science of automatically targeting his prey. At the same time, he wants to train the system well enough that it won’t fire on humans or other animals such as cats and birds which might visit his garden.

A Raspberry Pi 3 with a cheap webcam is used to surveil the garden and detect motion. When frames containing motion are detected, they are forwarded to a laptop which has enough horsepower to handle the squirrel detection through Darknet YOLO. [Peter] recognizes this isn’t an ideal architecture for real-time targeting of a sentry turret, but it’s good enough for training the system.

Which incidentally is what [Peter] spends the most time explaining on the project’s Hackaday.io page. From the saga of getting the software environment up and running to determining how many pictures of squirrels in his yard he should provide the software for training, it’s an excellent case study in rolling your own image recognition system. After approximately 18 hours of training, he now has a system which is able to pick squirrels out from the foliage. The next step is hooking up the turret.

We’ve covered other automated turrets here on Hackaday, and we’ve seen automated devices for terrifying squirrels before, but this is the first time we’ve seen the concepts mixed.