80's vintage Tomy Omnibot and Futaba RC Transmitter

80’s Omnibot Goes RC And Gets A Modern Refresh

Thrift stores, antique shops, knick-knack stores- Whatever you might call them in your locale, they’re usually full of “another man’s treasure”. More often than not, we leave empty-handed, hoping another shop has something we just can’t live without. But on rare occasions, when the bits all flip in our favor, we find real gems that although we have no idea what we’re going to do with them, just have to come home with us.

[Charles] ran into this exact situation recently when he walked into yet another shop among many dotting the highways and byways of Georgia and spotted it: A Tomy Omnibot beckoning to him from the 1980s. [Charles] didn’t know what he’d do with the Omnibot, but he had to have it. Not being one to have things just sit around, he set out to make it useful by combining it with an era-appropriate Futaba 4 channel AM radio, and updating all of the electronics with modern hardware.  The Mission? Drive it around at car shows and meetups where he already takes his 1980’s era vans.

We’re not going to spoil the goodies, but be sure to read [Charles]’ blog post to see how he hacked a modern 2.4 GHz 7 channel radio into the vintage Futaba 4 channel AM radio case. We appreciated his analytical approach to meshing the older gimbals and potentiometers with the new radio guts. Not to mention what it took to get the Omnibot back into service using parts from his battle bots bin. You’ll love the attention to detail on the new battery, too!

We’ve featured [Charles] work in the past, and his Power Wheels racer fed by a recovered Ford Fusion battery is simply unforgettable. You might also appreciate another Omnibot revival we featured recently. And as always, if you have a hack to share, submit it via the Tip Line!

A tiny robot with two wheels for sumo tournaments

Pint-sized Sumo Robot Is Adorable, Accessible And Totally Awesome

We’ve seen plenty of impressive robots of all sizes here at Hackaday, but recently we were particularly inspired by [Hans Jørgen Grimstad] and his thrifty mini sumo build.

Using the BBC micro:bit platform as a starting point, Hans seized the opportunity to build a competitive mini sumo bot without breaking the bank. According to his blog, the enchanting little machine uses commonly available parts and cost around $30 when built in 2020 (or $50 according to the more recent video, perhaps taking into account the cost of hardware in these trying times).

The results can be seen in the video below. Some sacrifices were made – Hans admits that the 3.3 V linear regulator gets a little toasty, but the design is kept much simpler by doing away with a switching regulator. The 700 RPM N20 motors are wired directly up to the 6 V battery pack, giving this plucky wrestler plenty of sumo-smashing power.

Hans hopes that the build can lower barriers to entry for new builders in robot tournaments, being something that can easily be put together in a garage or local makerspace for a low, low price. The mini sumo form factor is a great beginner or amateur project, made even easier when makers like Hans put all the nitty-gritty details up on GitHub. This is certainly not the first accessible sumo robotics project that we have covered, and it won’t be the last. We hope we see loads more of these endearing robotic gladiators at future events.

Continue reading “Pint-sized Sumo Robot Is Adorable, Accessible And Totally Awesome”

Intel RealSense D435 Depth Camera

RealSense No Longer Makes Sense For Intel

We love depth-sensing cameras and every neat hack they enabled, but this technological novelty has yet to break through to high volume commercial success. So it was sad but not surprising when CRN reported that Intel has decided to wind down their RealSense product line.

As of this writing, one of the better confirmations for this report can be found on the RealSense SDK GitHub repository README. The good news is that core depth-sensing RealSense products will continue business as usual for the foreseeable future, balanced by the bad news that some interesting offshoots (facial authentication, motion tracking) will be declared “End of Life” immediately and phased out over the next six months.

This information tells us while those living out on the bleeding edge will have to scramble, there is no immediate crisis for everyone else, whether they be researchers, hobbyists, or product planners. But this also means there will be no future RealSense cameras, kicking off many “What’s Next?” discussions in various communities. Like this thread on ROS (Robot Operating System) Discourse.

Three popular alternatives offer distinctly different tradeoffs. The “Been Around The Block” name is Occipital, with their more expensive Structure Pro sensor. The “Old Name, New Face” option is Microsoft Azure Kinect, the latest non-gaming-focused successor to the gaming peripheral that started it all. And let’s not forget OAK-D as the “New Kid On The Block” that started with a crowdfunding campaign and building an user community by doing things like holding contests. Each of these will appeal to a different niche, and we’ll keep our eye open in the future. Let’s see if any of them find the success that eluded the original Kinect, Google’s Tango, and now Intel’s RealSense.

[via Engadget]

Minimalist Robot Arm Really Stacks Up

There’s nothing like a little weekend project, especially one that ends up better than you expected. And when you literally build a robotic arm out of workshop scraps, so much the better.

Longtime readers will no doubt recognize the build style used here as that of [Norbert Heinz], aka “Homofaciens” on YouTube. [Norbert] has a way of making trash do his bidding, and has shown us all kinds of seemingly impossible feats of mechatronics with just what’s lying around. In this case, his robot arm is made from scrap wooden roofing battens, or what we’d call furring strips here in the US. The softwood isn’t something you’d think would make a great material for building robots, but [Norbert] makes its characteristics work for him, like using wax-lubricated holes for hinge points. Steppers and lead screws cannibalized from an old CNC build, along with the drive electronics, provide the motion. It’s a bit — compliant — but precise enough to pick up nuts and stack them nicely. The video below gives an overview of the build, and detailed instructions are available too.

We always appreciated [Norbert]’s minimalist builds, and seeing what can be accomplished with almost nothing is always inspirational. If you’re not familiar with his work, check out his cardboard and paperclip CNC plotter, his tin can encoders, or his plasma-powered printer.

Continue reading “Minimalist Robot Arm Really Stacks Up”

Robot with star shaped wheels made of foam.

Build An Amphibious Robot Using Pool Noodles For Wheels

If you only think of wheels as round, you’re limiting yourself from experiencing the true wider world of whacky designs. [wadevag] has been experimenting with some such concepts, and has had success building an amphibious robot platform using star-shaped wheels built out of pool noodles.

The concept is similar to that of whegs. A portmanteau of wheel-legs, they’re in effect a form of leg that moves with a rotating motion. Essentially, the points of the stars on the wheels act like legs, pushing the robot along one by one, rather than having continuous contact with the ground as in a typical round wheel.

The flotation provided by the foam allows the robot to easily sit on top of the water’s surface, and the star shape allows them to act as viable paddles too. This is perhaps their primary advantage. A round wheel would not provide anywhere near as much forward propulsion.

[wadevag] shows off the concept’s abilities on water, concrete, and snow, and it handles them all ably. Impressively, it can both enter and exit the water under its own power. While it’s probably not a viable solution for a very heavy robot, for a lightweight design, it could work wonders. It’s not the first time we’ve seen some oddball wheel designs, either. Video after the break.

Continue reading “Build An Amphibious Robot Using Pool Noodles For Wheels”

Atlas robot jumps over a gap

Boston Dynamics Atlas Dynamic Duo Tackles Obstacle Course

Historically, the capabilities of real world humanoid robots have trailed far behind their TV and movie counterparts. But roboticists kept pushing state of the art forward, and Boston Dynamics just shared a progress report: their research platform Atlas can now complete a two-robot parkour routine.

Watching the minute-long routine on YouTube (embedded after the break) shows movements more demanding than their dance to the song “Do You Love Me?  And according to Boston Dynamics, this new capability is actually even more impressive than it looks. Unlike earlier demonstrations, this routine used fewer preprogrammed motions that made up earlier dance performances. Atlas now makes more use of its onboard sensors to perceive its environment, and more of its onboard computing power to decide how to best move through the world on a case-by-case basis. It also needed to string individual actions together in a continuous sequence, something it had trouble doing earlier.

Such advances are hard to tell from a robot demonstration video, which are frequently edited and curated to show highlighted success and skip all the (many, many) fails along the way. Certainly Boston Dynamics did so themselves before, but this time it is accompanied by almost six minutes worth of behind-the-scenes footage. (Also after the break.) We see the robot stumbling as it learned, and the humans working to put them back on their feet.

Humanoid robot evolution has not always gone smoothly (sometimes entertainingly so) but Atlas is leaps and bounds over its predecessors like Honda Asimo. Such research finds its way to less humanoid looking robots like the Stretch. And who knows, maybe one day real robots will be like their TV and movie counterparts that have, for so long, been played by humans inside costumes.

Continue reading “Boston Dynamics Atlas Dynamic Duo Tackles Obstacle Course”

Robot Pet Is A Chip Off The Old Logic Block

When [Ezra Thomas] needed inspiration for his senior design project, he only needed to look as far as his own robot. Built during his high school years from the classic 1979 Frank DaCosta book “How to Build Your Own Working Robot Pet”, [Ezra] had learned the hard way the many limitations and complexities of the wire wrapped 74xx series logic chips surrounding its 8085 processor.

[Ezra] embarked on a quest to recreate the monstrosity in miniature, calling it Pet on a Chip. Using a modern FPGA chip allows the electronics to shrink by an order of magnitude and provides flexibility for future expansion. Implementing an 8 bit CPU on the amply sized FPGA left plenty of room for a VGA GPU, motor controller, serial UART, and more. Programming the CPU is handled by a custom assembler written in Python.

The results? Twelve times less weight, thirteen times less power draw, better performance, and a lot of room for growth. [Ezra] hints at an I2C bus expansion as well as a higher level programming language to make software development less of a hurdle.

The Pet On A Chip is a wonderfully engineered project and we hope that we’ll be seeing more such from [Ezra] as time goes by. Watch his Pet On A Chip in action in the video below the break.

If [Ezra]’s FPGA escapades have you wondering how to get started, you can check out this introduction to FPGA from the 2019 Hackaday Superconference. And if you have your own FPGA creation to share, please let us know via the Tip Line!

Continue reading “Robot Pet Is A Chip Off The Old Logic Block”