How many 555 timers does it take to add up two 10 digit numbers? [Alan’s] 555 Adding Machine does it with 102 of them, he designed the machine as an extreme entry to the 555 contest and the original plan was to make it even more complicated. This machine uses the 555’s to implement a nine decade accumulator and multiplexer, all inputs are managed by an old school dial from a rotary phone which apparently provide nicely timed outputs. Addition and subtraction are achieved using 9s compliment arithmetic which he discusses in the video after the break, for anyone who wants to brush up on 9s compliment or 555 theory.

Alan’s website has some nice pictures (We’re particularly impressed by all that minimalistic soldering) including schematics, and a very nice 33 minute video in which he discusses in detail how the machine works and even offers some history on the Pascaline, which is mechanical calculator that works on similar principles.

# Dishwasher notifier for the absent-minded

[Quinn] over at BlondiHacks is admittedly pretty absent-minded when it comes to household chores such as emptying the dishwasher. She often can’t remember if the dishes are dirty or ready to be put away, so she decided it was time to devise a mechanism that would help keep her on task. She originally considered a double-sided sign that said “Clean” on one side, “Dirty” on the other, but she chose the fun option and decided to over-engineer the problem instead.

She ultimately focused on two conditions that she needed to monitor: when the dishwasher had been run, and when the dishes have been emptied. To tackle the first condition, she used a thermistor to detect when the door of the dishwasher got hot from the wash cycle. The second wasn’t quite as easy, since she often peeks into the dishwasher to grab a clean dish when needed, unloading the rest later. She eventually settled on using a tilt switch to monitor the angle of the door, assuming that the dishes have been removed if the door was open for over a minute.

[Quinn] reports that her Dish-o-Tron 6000 works well, and she had a good time building it. Sure the whole thing is kind of overkill, but where’s the fun in moderation?

# Light-sensing circuit for power saving applications

Instructables user [MacDynamo] was thinking about home security systems and wondered how much electricity is being wasted while such systems are powered on, but not activated. He pondered it awhile, then designed a circuit that could be used to turn a security system on or off depending on the time of day, but without using any sort of clock.

His system relies on a 555 timer configured as a Schmitt trigger, with a photoresistor wired to the reset pin. When the ambient light levels drop far enough, the resistance on the reset pin increases, and the 555 timer breaks out of its reset loop. This causes the circuit to power on whatever is connected to it. When the sun rises, the resistance on the reset pin drops and the 555 timer continually resets until it gets dark again. He notes that this behavior can be easily reversed if you were to put the photoresistor on the trigger pin rather than the reset pin.

We like the idea, though we are a bit wary about using this for any sort of real security system. An errant insect or debris could cause the system to be turned on, and we’d feel pretty foolish if someone disabled our alarm with a flashlight. That said, this sort of circuit still has plenty of practical, power-saving applications outside the realm of home security.

# Adjustable prank box growls and screams

[Brett] over at FightCube was tossing around ideas to build a screaming prank circuit that fits inside an Altoids tin. Sound familiar? We featured a story just a few days back about the construction of a very similar item by [Dino Segovis]. It seems that great minds think alike after all!

[Brett’s] version is a bit more robust than the one we featured the other day. It’s similar to [Dino’s] in that it uses a 555 timer in astable mode, triggered by a normally-closed microswitch when the tin is opened. However, this version also includes a photoresistor which is used to increase the pitch and speed of the output as more light enters the box. This creates a growling effect that builds up into a scream as the box is opened. [Brett] has also included an adjustable pot which allows the sound range to be tweaked to his liking.

Stick around for a video walkthrough of the screamer circuit as well as a demo of the Altoids tin in action.

# Screaming Altoids tin just in time for April Fool’s

Maker [Dino Segovis] has started on a project he calls “Hack a week” where he will be putting together one hack or project per week, for a full year. The first installment of his video series was finished just two days before April Fool’s, and appropriately enough covers the construction of a circuit you can use to prank your friends.

The “Altoids Screamer” is a simple circuit based on a 555 timer that he built into a standard Altoids Tin. The 555 timer is used to generate a loud pitched squeal whenever the tin is opened. This is accomplished by wiring up the 555 in astable mode, and connecting it to a speaker to output the sound. A micro switch is installed inside the tin to detect when the top has been opened, triggering the “scream”.

While it’s not the most complex circuit we’ve seen, it definitely gets the job done and is easy enough to build in time for tomorrow’s festivities. It is a great hack for the office, the library, or any other quiet place.

Continue reading to watch [Dino’s] first Hack a Week video demonstrating the prank’s construction. If you are interested in some more of his work, be sure to check out this automatic ball launcher and this other 555 Screamer toy.

# Real life Super Mario coin block

Instructables user [Bruno] recently constructed a fun little toy that brings a bit of the Mario nostalgia out of the video game universe and into ours. His Super Mario coin block is instantly recognizable from the first Mario game and performs just as you would expect it to. Punching or tapping the bottom of the block releases coins one at a time, complete with sounds straight from the game.

The coin block is constructed from thick cardboard and wrapped in color mock ups of the in-game block. Inside, a spring-loaded tube of coins is placed above a launch arm which is also connected to a spring. A servo actuated arm pulls the launch arm down, dropping a coin from its tube on to the launch arm which is then flung from the top of the box once the servo arm rotates far enough. When this occurs, the built-in MP3 player is triggered to play the “coin sound” from the game. A 555 timer is used to ensure the servo actuated arm rotates once per activation, and a LM386-based amplifier is used to increase the output volume of the MP3 player, both of which operate using rechargeable batteries.

Be sure to check out some of the inner workings as well as the final product in the videos embedded below.

[Thanks, Samjc3]

# Hardware-based security keypad keeps it simple

Instructables user [trumpkin] recently built an all-hardware based keypad lock for a contest he was entering, and we thought it was pretty neat. The lock uses mostly NAND gates and 555 timers to get the job done, which makes it a nice alternative to similar software-based projects we have seen in the past.

The lock has 6 keys on the keypad, which is connected to the main logic board. The keycode is set using a series of headers at the bottom of the board, and you get 10 chances to enter the proper code before the board locks up completely. If this occurs, a “manual” reset via a button built into the main board is required before any more attempts can be made.

As you can see in the video below, the lock works quite well, but suffers from one shortcoming. Any permutation of the key code can be used to deactivate the lock, which is something [trumpkin] says he would like to improve in the future.

If you are looking for some more security-related reading, be sure to check out these other hacks we have featured in the past.