DIY Dungeon Crawler Game Plays On Single LED Strip

A delightful version of a clever one-dimensional game has been made by [Critters] which he calls TWANG! because the joystick is made from a spring doorstop with an accelerometer in the tip. The game itself is played out on an RGB LED strip. As a result, the game world, the player, goal, and enemies are all represented on a single line of LEDs.

How can a dungeon crawler game be represented in 1D, and how is this unusual game played? The goal is for the player (a green dot) to reach the goal (a blue dot) to advance to the next level. Making this more difficult are enemies (red dots) which move in different ways. The joystick is moved left or right to advance the player’s blue dot left or right, and the player can attack with a “twang” motion of the joystick, which eliminates nearby enemies. By playing with brightness and color, a surprising amount of gameplay can be jammed into a one-dimensional display!

Code for TWANG! is on github and models for 3D printing the physical pieces are on Thingiverse. The video (embedded below) focuses mainly on the development process, but does have the gameplay elements explained as well and demonstrates some slick animations and sharp feedback.

Continue reading “DIY Dungeon Crawler Game Plays On Single LED Strip”

Balance Like A Mountain Goat On This Simple Stewart Platform

No goats were harmed in the making of this 3-DOF Stewart platform for [Bruce Land]’s microcontrollers course at Cornell.

If the name “Stewart platform” doesn’t ring a bell, the video below will help you out. [Team Microgoats] built a small version of the mechanical system commonly seen in flight simulators, opting for 3 DOF  to simplify the design. Their PIC32-controlled steppers can wobble and weave the table in response to inputs from an MPU-6050 six-axis accelerometer embedded in the base of a 3D-printed goat. Said goat appears to serve no other role in the build, but goats are cool, so why not? And if you’ve ever seen a mountain goat frolicking across a sheer vertical rock face like it was walking across a parking lot, you’ll understand the connection to the balance and control offered by a Stewart platform.

[Bruce Land]’s course is always a bonanza of neat projects that pop up in our tipline this time of year, like a POV box fan, a coin cell Rickrolling throwie, and a dynamometer for small electric motors.

Continue reading “Balance Like A Mountain Goat On This Simple Stewart Platform”

Smart Station Runs Entertainment, Is Entertainment

It’s that special time of year—time for the parade of student projects from [Bruce Land]’s embedded microcontroller design course at Cornell. [Timothy], [Dhruv], and [Shaurya] are all into remote sensing and control applications, so they built a smart station that combines audiovisual entertainment with environmental sensing.

As with the other projects in this course, the smart station is built on a PIC32 dev board. It does Bluetooth audio playback via RN-52 module and has a beat-matching light show in the form of a NeoPixel ring mounted atop the 3D-printed enclosure. But those blinkenlights aren’t just there to party. They also provide visual feedback about the environment, which comes from user-adjustable high and low trigger values for the mic, an accelerometer, a temperature and humidity sensor, and a luminosity sensor.

The group wanted to add an ultrasonic wake-up feature, but it refused to work with the 3.3V from the PIC. The NeoPixel ring wanted 5V too, but isn’t as picky. It looks to be plenty bright at 3.3V. Another challenge came from combining I²C, UART, analog inputs, and digital outputs. They had to go to the chip’s errata to verify it, but it’s there: whenever I²C1 is enabled, the first two analog pins are compromised, and there’s no official solution. The team got around it by using a single analog pin and a multiplexer. You can check out those blinkenlights after the break.

Maybe you prefer working in wood. If so, you might like this hexagonal take on audio-visualization.

Continue reading “Smart Station Runs Entertainment, Is Entertainment”

Spice Up Your Dice With Bluetooth

There’s no shortage of projects that replace your regular board game dice with an electronic version of them, bringing digital features into the real world. [Jean] however goes the other way around and brings the real world into the digital one with his Bluetooth equipped electronic dice.

These dice are built around a Simblee module that houses the Bluetooth LE stack and antenna along with an ARM Cortex-M0 on a single chip. Adding an accelerometer for side detection and a bunch of LEDs to indicate the detected side, [Jean] put it all on a flex PCB wrapped around the battery, and into a 3D printed case that is just slightly bigger than your standard die.

While they’ll work as simple LED lighted replacement for your regular dice as-is, their biggest value is obviously the added Bluetooth functionality. In his project introduction video placed after the break, [Jean] shows a proof-of-concept game of Yahtzee displaying the thrown dice values on his mobile phone. Taking it further, he also demonstrates scenarios to map special purposes and custom behavior to selected dice and talks about his additional ideas for the future.

After seeing the inside of the die, it seems evident that getting a Bluetooth powered D20 will unfortunately remain a dream for another while — unless, of course, you take this giant one as inspiration for the dimensions.

Continue reading “Spice Up Your Dice With Bluetooth”

Stop Motion With The Time Glove

What do you get when you put an ultra-bright LED in the palm of a glove, and strobe it controlled by an accelerometer? A Time Control Glove! In creator [MadGyver]’s own words, it’s “just a stroboscope with frequency adjustment” but the effect is where all the fun is.

The Time Control Glove uses the stroboscopic effect, which many of us have seen used in timeless water drop fountains where the strobe rate makes drops appear to change speed, freeze in place, and even change direction. [MadGyver] made the entire assembly portable by putting it into a glove. An on-board accelerometer toggles the strobe in response to a shake, and the frequency is changed by twisting the glove left or right. The immediate visual feedback to the physical motions is great. The whole effect is really striking on the video, which is embedded below.

Continue reading “Stop Motion With The Time Glove”

Quick Hack Helps ALS Patient Communicate

A diagnosis of amyotrophic lateral sclerosis, or ALS, is devastating. Outlier cases like [Stephen Hawking] notwithstanding, most ALS patients die within four years or so of their diagnosis, after having endured the progressive loss of muscle control that robs them of their ability to walk, to swallow, and even to speak.

Rather than see a friend’s father locked in by his ALS, [Ricardo Andere de Mello] decided to help out by building a one-finger interface to a [Hawking]-esque voice synthesizer on the cheap. Working mainly with what hardware he had on hand, his system lets his friend’s dad flick a finger to operate off-the-shelf assistive communication software running on a laptop. The sensor is an accelerometer velcroed to a fingertip; when a movement threshold is passed, an Arduino sends the laptop an F12 keypress, which is all that’s needed to operate the software. You can watch it in action in the video after the break.

Hats off to [Ricardo] for pitching in and making a difference without breaking the bank. This isn’t the first expedient speech synthesizer we’ve seen for ALS patients — this one does it just three chips, including voice synthesis. Continue reading “Quick Hack Helps ALS Patient Communicate”

Hackaday Prize Entry: Hand Tremor Suppression Wearable Device

It is extremely distressing to watch someone succumb to an uncontrollable hand tremor. Simple tasks become frustrating and impossible, and a person previously capable becomes frail and vulnerable. Worse still are the reactions of other people, in whom the nastiest of prejudices can be unleashed. A tremor can be a debilitating physical condition, but it is not one that changes who the person afflicted with it is.

An entry from [Basian Lesi] in this year’s Hackaday Prize aims to tackle hand tremors, and it takes the form of a wearable device that tries to correct the tremors by applying small electrical stimuli in response to the motion it senses from its built-in accelerometer. At its heart is an ATMega328p microcontroller and an MPU6050 accelerometer chip, and the prototype is shown using a piece of stripboard mounted in a 3D-printed box. It’s still in development and testing, but they have posted a video showing impressive results that you can see below the break, claiming an 85% reduction in tremors.

Continue reading “Hackaday Prize Entry: Hand Tremor Suppression Wearable Device”