3D-Printed Punch And Die Stand Up To Steel

When you think of machine tooling, what comes to mind might be an endmill made of tungsten carbide or a punch and die made of high-speed steel. But surely there’s no room in the machine tool world for 3D-printed plastic tools, especially for the demanding needs of punching parts from sheet metal.

As it turns out, it is possible to make a 3D-printed punch and die set that will stand up to repeated use in a press brake. [Phil Vickery] decided to push the tooling envelope to test this, and came away pleasantly surprised by the results. In fairness, the die he used ended up being more of a composite between the carbon-fiber nylon filament and some embedded metal to reinforce stress points in the die block. It looks like the punch is just plastic, though, and both were printed on a Markforged Mark 2, a printer specifically designed for high-strength parts. The punch and die set were strong enough to form 14-gauge sheet steel in a press brake, which is pretty impressive. The tool wasn’t used to cut the metal; the blanks were precut with a laser before heading to the press. But still, having any 3D-printed tool stand up to metal opens up possibilities for rapid prototyping and short production runs.

No matter what material you make your tooling out of, there’s a lot to know about bending metal. Check out the basics in our guide to the art and science of bending metal.

Continue reading “3D-Printed Punch And Die Stand Up To Steel”

Vacuum Molding With Kitchen Materials

Vacuum pumps are powerful tools because the atmospheric pressure on our planet’s surface is strong. That pressure is enough to crush evacuated vessels with impressive implosive force. At less extreme pressure differences, [hopsenrobsen] shows us how to cleverly use kitchen materials for vacuum molding fiberglass parts in a video can be seen after the break. The same technique will also work for carbon fiber molding.

We’ve seen these techniques used with commercially available vacuum bags and a wet/dry vac but in the video, we see how to make an ordinary trash bag into a container capable of forming a professional looking longboard battery cover. If the garbage bag isn’t enough of a hack, a ball of steel wool is used to keep the bag from interfering with the air hose. Some of us keep these common kitchen materials in the same cabinet so gathering them should ’t be a problem.

Epoxy should be mixed according to the directions and even though it wasn’t shown in the video, some epoxies necessitate a respirator. If you’re not sure, wear one. Lungs are important.

Fiberglass parts are not just functional, they can be beautiful. If plastic is your jam, vacuums form those parts as well. If you came simply for vacuums, how about MATLAB on a Roomba?

Thank you [Jim] who gave us this tip in the comments section about an electric longboard.

Continue reading “Vacuum Molding With Kitchen Materials”

Pi Handheld With A Mindblowing Enclosure

The Raspberry Pi is possibly the world’s most popular emulation platform these days. While it was never intended to serve this purpose, the fact remains that a small, compact computer with flexible I/O is ideally suited to it. We’ve featured a multitude of builds over the years using a Pi in a mobile form factor to take games on the go. [Michael]’s build, however, offers a lot more than a few Nintendo ROMs and some buttons from eBay. It’s a tour de force in enclosure design.

The build starts with the electronics. In 2017 it’s no longer necessary to cobble together five different accessory boards to handle the controls, battery charging, and display. Boards like Kite’s Super All In One exist, handling everything necessary for a handheld game console. With this as a starting point, he then set out to recreate Nintendo’s classic Game Boy, with a few tweaks to form and function.

It’s a textbook example of smart planning, design, and execution. We are taken through the process of creating the initial CAD drawings, then combining 3D printed parts with wood and carbon fibre for a look that is more akin to a high-end piece of hi-fi gear than anything related to gaming. The attention to detail is superb and the write-up makes it look easy, while [Michael] shares tips on how to safely cut carbon fibre to make your own buttons.

The final results are stunning, and it’s a great example of why a fine piece of wood is always a classy way to go for an enclosure. For another great example, try this walnut keyboard, or check out the roots of the Raspberry Pi Game Boy movement.

Delivery Drone Aims To Make Package Handoffs Safer Than Ever

Picture this: you’re at home and you hear a rapping on your door. At last!– your parcel has arrived. You open the door, snatch a drone out of the air, fold it up, remove your package, unfold it and set it down only for it to take off on its merry way. Hand-delivery courier drones might be just over the horizon.

Designed in the [Laboratory of Intelligent Systems] at Switzerland’s École Polytechnique Fédérale de Lausanne and funded by [NCCR Robotics], this delivery drone comes equipped with its own collapsible carbon fibre shield — it fold up small enough to fit in a backpack — and is able to carry packages such as letters, small parcels, and first aid supplies up to 500 g and to 2 km away!

Continue reading “Delivery Drone Aims To Make Package Handoffs Safer Than Ever”

Electric Longboard With All-New Everything

We love [lolomolo]’s Open Source electric longboard project. Why? Because he completely re-engineered everything while working on the project all through college. He tackled each challenge, be it electronic or mechanical as it came, and ended up making everything himself.

The 48″ x 13″ deck is a rather unique construction utilizing carbon fiber and Baltic birch. In testing the deck, [lolomol] found the deflection was less than an inch with 500 lbs. on the other end. He modified the Caliber II trucks to add four 2250W Turnigy Aerodrive brushless outrunners driving the wheels with the help of belts. The motors are controlled by VESC, an Open Source speed controller. There are a lot of fun details, like the A123 lithium cells equipped with custom battery management system PCBs.

The board sports 5W RGBW headlights that are so bright he can only run them at 10% PWM, plus RGB LED underlighting. All of it is controlled by an onboard Linux box. You can check out [lolomolo]’s GitHub repository for code, schematics, and CAD files. His Instructable for this project also has more design notes and thoughts.

If sweet longboards are your bag, check out the 3D-printed longboard and the long-distance electric longboard we published previously.

Soluble Molds For Composite Parts

People have been experimenting with 3D printed molds for fiberglass and carbon fiber for a while now, but these molds really aren’t much different from what you could produce with a normal CNC mill. 3D printing opens up a few more options for what you can build including parts that could never be made on any type of mill. The guys at E3D are experimenting with their new dissolvable filament to create incredible parts in carbon fiber.

For the last year, E3D has been playing around with their new soluble filament, Scaffold. This is the water-soluble support material we’ve all been waiting for: just throw it in a bucket of warm water and it disappears. The normal use case for this filament is as a support material, but for these experiments in composites, E3D are just printing whole objects, covering them in carbon fiber prepreg, vacuum bagging them, and allowing them to cure. Once the carbon fiber isn’t floppy and gooey, the support material is dissolved in water, leaving a perfect composite part.

E3D aren’t that experienced with composites, so they handed a bit of filament off to So3D for some additional experimentation. The most impressive part (in the title pic for this post) is a hollow twisted vase object. This would have required a six-part machined mold and would have cost thousands of dollars to fabricate. Additional experiments of embedding ABS parts inside the Scaffold mold were extremely successful.

As you would expect, there are limitations to this process. Since E3D are using a dissolvable mold, this is a one-time deal; you’re not going to be pulling multiple composite parts off a 3D printed mold like you would with a machined mold. Curing the parts in a very hot oven doesn’t work — Scaffold filament starts to sag around 60°C. Using prepreg is recommended over dry fabric and resin, but that seems to be due more to the skill of the person doing the layup rather than an issue with materials.

Long-range Electric Longboard Outlasts Rider

What could be better than a holiday ride past the palm trees and blue waters of a Mediterranean resort town? Perhaps making that ride on a long-range electric longboard of your own design will ice that particular cake.

And when we say long range, we mean it – an estimated 25 miles. The only reason [overclocker_kris] couldn’t come up with an exact number in the test drive seen below is that he got too tired to continue after mile 20. With a bit of juice left in the 64-cell battery pack, built from 18650s harvested from old laptops, the board was sure to have another five miles in it. A custom molded underslung carbon fiber enclosure houses the battery pack and electronics, including the receiver for the handheld remote control and the ESCs for the two motors. Motor mounts were fabbed from aluminum and welded to the trucks, with power transmission through timing belts to 3D-printed pulleys. It’s a good-looking build, and topping out at 22 MPH isn’t too shabby either.

We’ve covered fleets of electric longboards before, from those with entirely 3D-printed decks to one with a flexible battery pack. But we doubt any have the endurance and performance of this board.

Continue reading “Long-range Electric Longboard Outlasts Rider”